Phosphorylation of carboxypeptidase B1 protein regulates β-cell proliferation
- Authors:
- Seong-Lan Yu
- Seungyun Han
- Hong Rye Kim
- Jong Woo Park
- Dong Il Jin
- Jaeku Kang
-
Affiliations: Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea, Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea, Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea, Department of Pharmacology, SungKyunKwan University, Suwon 16419, Republic of Korea - Published online on: September 19, 2017 https://doi.org/10.3892/ijmm.2017.3141
- Pages: 1397-1404
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G and van der Kooy D: Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 22:1115–1124. 2004. View Article : Google Scholar : PubMed/NCBI | |
D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK and Baetge EE: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 24:1392–1401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, et al: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 26:443–452. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lampeter EF, Gurniak M, Brocker U, Klemens C, Tubes M, Friemann J and Kolb H: Regeneration of beta-cells in response to islet inflammation. Exp Clin Endocrinol Diabetes. 103(Suppl 2): 74–78. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hayashi KY, Tamaki H, Handa K, Takahashi T, Kakita A and Yamashina S: Differentiation and proliferation of endocrine cells in the regenerating rat pancreas after 90% pancreatectomy. Arch Histol Cytol. 66:163–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J and Sander M: Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 138:653–665. 2011. View Article : Google Scholar : PubMed/NCBI | |
Criscimanna A, Coudriet GM, Gittes GK, Piganelli JD and Esni F: Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice. Gastroenterology. 147:1106–1118. 2014. View Article : Google Scholar | |
Dor Y, Brown J, Martinez OI and Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 429:41–46. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S and Herrera PL: Conversion of adult pancreatic alpha-cells to betacells after extreme beta-cell loss. Nature. 464:1149–1154. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, et al: Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature. 514:503–507. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A and Bonner-Weir S: Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 105:19915–19919. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu X, D'Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, et al: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 132:197–207. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lim HW, Lee JE, Shin SJ, Lee YE, Oh SH, Park JY, Seong JK and Park JS: Identification of differentially expressed mRNA during pancreas regeneration of rat by mRNA differential display. Biochem Biophys Res Commun. 299:806–812. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shin JS, Lee JJ, Lee EJ, Kim YH, Chae KS and Kim CW: Proteome analysis of rat pancreas induced by pancreatectomy. Biochim Biophys Acta. 1749:23–32. 2005. View Article : Google Scholar : PubMed/NCBI | |
De León DD, Farzad C, Crutchlow MF, Brestelli J, Tobias J, Kaestner KH and Stoffers DA: Identification of transcriptional targets during pancreatic growth after partial pancreatectomy and exendin-4 treatment. Physiol Genomics. 24:133–143. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Liu W, Wang CY, Liu T, Zhou F, Tao J, Wang Y and Li MT: Proteomic analysis of differential protein expression in early process of pancreatic regeneration in pancreatectomized rats. Acta Pharmacol Sin. 27:568–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi JH, Lee MY, Kim Y, Shim JY, Han SM, Lee KA, Choi YK, Jeon HM and Baek KH: Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem. 391:1019–1029. 2010. View Article : Google Scholar : PubMed/NCBI | |
Choi JH, Lee MY, Ramakrishna S, Kim Y, Shim JY, Han SM, Kim JY, Lee DH, Choi YK and Baek KH: LCP1 up-regulated by partial pancreatectomy supports cell proliferation and differentiation. Mol Biosyst. 7:3104–3111. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rukstalis JM and Habener JF: Neurogenin3: A master regulator of pancreatic islet differentiation and regeneration. Islets. 1:177–184. 2009. View Article : Google Scholar | |
Reichert M, Takano S, von Burstin J, Kim SB, Lee JS, Ihida-Stansbury K, Hahn C, Heeg S, Schneider G, Rhim AD, et al: The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev. 27:288–300. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ahlgren U, Jonsson J, Jonsson L, Simu K and Edlund H: beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12:1763–1768. 1998. View Article : Google Scholar : PubMed/NCBI | |
Li S, Iakoucheva LM, Mooney SD and Radivojac P: Loss of post-translational modification sites in disease. Pacific Symposium on Biocomputing. Pac Symp Biocomput. 337–347. 2010. | |
Paulo JA, Kadiyala V, Brizard S, Banks PA, Steen H and Conwell DL: Post-translational modifications of pancreatic fluid proteins collected via the endoscopic pancreatic function test (ePFT). J Proteomics. 92:216–227. 2013. View Article : Google Scholar : PubMed/NCBI | |
Petersen HV, Peshavaria M, Pedersen AA, Philippe J, Stein R, Madsen OD and Serup P: Glucose stimulates the activation domain potential of the PDX-1 homeodomain transcription factor. FEBS Lett. 431:362–366. 1998. View Article : Google Scholar : PubMed/NCBI | |
Khoo S, Griffen SC, Xia Y, Baer RJ, German MS and Cobb MH: Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem. 278:32969–32977. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lebrun P, Montminy MR and Van Obberghen E: Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem. 280:38203–38210. 2005. View Article : Google Scholar : PubMed/NCBI | |
Boucher MJ, Selander L, Carlsson L and Edlund H: Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem. 281:6395–6403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Meng R, Al-Quobaili F, Müller I, Götz C, Thiel G and Montenarh M: CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Cell Mol Life Sci. 67:2481–2489. 2010. View Article : Google Scholar : PubMed/NCBI | |
Frogne T, Sylvestersen KB, Kubicek S, Nielsen ML and Hecksher-Sørensen J: Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation. PLoS One. 7:e352332012. View Article : Google Scholar : PubMed/NCBI | |
Grijalva JL, Huizenga M, Mueller K, Rodriguez S, Brazzo J, Camargo F, Sadri-Vakili G and Vakili K: Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am J Physiol Gastrointest Liver Physiol. 307:G196–G204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moles A, Butterworth JA, Sanchez A, Hunter JE, Leslie J, Sellier H, Tiniakos D, Cockell SJ, Mann DA, Oakley F, et al: A RelA(p65) Thr505 phospho-site mutation reveals an important mechanism regulating NF-κB-dependent liver regeneration and cancer. Oncogene. 35:4623–4632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bonner-Weir S, Trent DF and Weir GC: Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 71:1544–1553. 1983. View Article : Google Scholar : PubMed/NCBI | |
Kim HR, Kang JK, Yoon JT, Seong HH, Jung JK, Lee HM, Sik Park C and Jin DI: Protein profiles of bovine placenta derived from somatic cell nuclear transfer. Proteomics. 5:4264–4273. 2005. View Article : Google Scholar : PubMed/NCBI | |
Harding JD and Rutter WJ: Rat pancreatic amylase mRNA. Tissue specificity and accumulation during embryonic development. J Biol Chem. 253:8736–8740. 1978.PubMed/NCBI | |
Jelenik T and Roden M: Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 19:258–268. 2013. View Article : Google Scholar : | |
Dephoure N, Gould KL, Gygi SP and Kellogg DR: Mapping and analysis of phosphorylation sites: A quick guide for cell biologists. Mol Biol Cell. 24:535–542. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ackermann AM and Gannon M: Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol. 38:193–206. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li WC, Rukstalis JM, Nishimura W, Tchipashvili V, Habener JF, Sharma A and Bonner-Weir S: Activation of pancreaticduct-derived progenitor cells during pancreatic regeneration in adult rats. J Cell Sci. 123:2792–2802. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marinkovic DV, Marinkovic JN, Erdös EG and Robinson CJ: Purification of carboxypeptidase B from human pancreas. Biochem J. 163:253–260. 1977. View Article : Google Scholar : PubMed/NCBI | |
Pousette A, Fernstad R, Sköldefors H and Carlström K: Novel assay for pancreatic cellular damage: 1. Characterization of protein profiles in human pancreatic cytosol and purification and characterization of a pancreatic specific protein. Pancreas. 3:421–426. 1988. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto KK, Pousette A, Chow P, Wilson H, el Shami S and French CK: Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J Biol Chem. 267:2575–2581. 1992.PubMed/NCBI | |
Chen CC, Wang SS, Chao Y, Chen SJ, Lee SD, Wu SL, Jeng FS and Lo KJ: Serum pancreas-specific protein in acute pancreatitis. Its clinical utility in comparison with serum amylase. Scand J G astroenterol. 29:87–90. 1994. View Article : Google Scholar | |
Printz H, Siegmund H, Wojte C, Schäfer C, Hesse H, Rothmund M and Göke B: 'Human pancreas-specific protein' (procarboxypeptidase B): A valuable marker in pancreatitis? Pancreas. 10:222–230. 1995. View Article : Google Scholar : PubMed/NCBI | |
Burgos FJ, Salvà M, Villegas V, Soriano F, Mendez E and Avilés FX: Analysis of the activation process of porcine procarboxypeptidase B and determination of the sequence of its activation segment. Biochemistry. 30:4082–4089. 1991. View Article : Google Scholar : PubMed/NCBI | |
Appelros S, Thim L and Borgström A: Activation peptide of carboxypeptidase B in serum and urine in acute pancreatitis. Gut. 42:97–102. 1998. View Article : Google Scholar : PubMed/NCBI | |
Müller CA, Appelros S, Uhl W, Büchler MW and Borgström A: Serum levels of procarboxypeptidase B and its activation peptide in patients with acute pancreatitis and non-pancreatic diseases. Gut. 51:229–235. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sokolovsky M: Porcine carboxypeptidase B. Nitration of the functional tyrosyl residue with tetranitromethane. Eur J Biochem. 25:267–273. 1972. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee S, Lardinois O, Bonini MG, Bhattacharjee S, Stadler K, Corbett J, Deterding LJ, Tomer KB, Kadiiska M and Mason RP: Site-specific carboxypeptidase B1 tyrosine nitration and pathophysiological implications following its physical association with nitric oxide synthase-3 in experimental sepsis. J Immunol. 183:4055–4066. 2009. View Article : Google Scholar : PubMed/NCBI | |
da Silva Xavier G, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A and Rutter GA: Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci USA. 97:4023–4028. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hussain MA, Porras DL, Rowe MH, West JR, Song WJ, Schreiber WE and Wondisford FE: Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation. Mol Cell Biol. 26:7747–7759. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rütti S, Arous C, Nica AC, Kanzaki M, Halban PA and Bouzakri K: Expression, phosphorylation and function of the Rab-GTPase activating protein TBC1D1 in pancreatic beta-cells. FEBS Lett. 588:15–20. 2014. View Article : Google Scholar | |
Khoury GA, Baliban RC and Floudas CA: Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci Rep. 1:12011. View Article : Google Scholar | |
De León DD, Deng S, Madani R, Ahima RS, Drucker DJ and Stoffers DA: Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes. 52:365–371. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F and Chung DC: Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes. 54:712–719. 2005. View Article : Google Scholar : PubMed/NCBI | |
Williams K, Abanquah D, Joshi-Gokhale S, Otero A, Lin H, Guthalu NK, Zhang X, Mozar A, Bisello A, Stewart AF, et al: Systemic and acute administration of parathyroid hormone-related peptide (1-36) stimulates endogenous beta cell proliferation while preserving function in adult mice. Diabetologia. 54:2867–2877. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, Vasavada RC and Garcia-Ocaña A: Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration. Diabetes. 63:216–223. 2014. View Article : Google Scholar | |
Gao L, Tang W, Ding Z, Wang D, Qi X, Wu H and Guo J: Proteinbinding function of RNA-dependent protein kinase promotes proliferation through TRAF2/RIP1/NF-κB/c-Myc pathway in pancreatic β cells. Mol Med. 21:154–166. 2015.PubMed/NCBI | |
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS and Stainier DY: Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 15:885–894. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sakano D, Choi S, Kataoka M, Shiraki N, Uesugi M, Kume K and Kume S: Dopamine D2 receptor-mediated regulation of pancreatic β cell mass. Stem Cell Reports. 7:95–109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mozar A, Lin H, Williams K, Chin C, Li R, Kondegowda NG, Stewart AF, Garcia-Ocaña A and Vasavada RC: Parathyroid hormone-related peptide (1-36) enhances beta cell regeneration and increases beta cell mass in a mouse model of partial pancreatectomy. PLoS One. 11:e01584142016. View Article : Google Scholar : PubMed/NCBI |