1
|
Harrison DG, Vinh A, Lob H and Madhur MS:
Role of the adaptive immune system in hypertension. Curr Opin
Pharmacol. 10:203–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Guzik TJ, Hoch NE, Brown KA, McCann LA,
Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG: Role of
the T cell in the genesis of angiotensin II induced hypertension
and vascular dysfunction. J Exp Med. 204:2449–2460. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Crowley SD, Song YS, Lin EE, Griffiths R,
Kim HS and Ruiz P: Lymphocyte responses exacerbate angiotensin
II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol.
298:R1089–R1097. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Muller DN, Kvakan H and Luft FC:
Immune-related effects in hypertension and target-organ damage.
Curr Opin Nephrol Hypertens. 20:113–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rudemiller N, Lund H, Jacob HJ, Geurts AM,
Mattson DL and PhysGen Knockout Program: CD247 modulates blood
pressure by altering T-lymphocyte infiltration in the kidney.
Hypertension. 63:559–564. 2014. View Article : Google Scholar
|
6
|
Kvakan H, Kleinewietfeld M, Qadri F, Park
JK, Fischer R, Schwarz I, Rahn HP, Plehm R, Wellner M, Elitok S, et
al: Regulatory T cells ameliorate angiotensin II-induced cardiac
damage. Circulation. 119:2904–2912. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Barhoumi T, Kasal DA, Li MW, Shbat L,
Laurant P, Neves MF, Paradis P and Schiffrin EL: T regulatory
lymphocytes prevent angiotensin II-induced hypertension and
vascular injury. Hypertension. 57:469–476. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Madhur MS, Lob HE, McCann LA, Iwakura Y,
Blinder Y, Guzik TJ and Harrison DG: Interleukin 17 promotes
angiotensin II-induced hypertension and vascular dysfunction.
Hypertension. 55:500–507. 2010. View Article : Google Scholar :
|
9
|
Zhang W, Wang W, Yu H, Zhang Y, Dai Y,
Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, et al: Interleukin
6 underlies angiotensin II-induced hypertension and chronic renal
damage. Hypertension. 59:136–144. 2012. View Article : Google Scholar
|
10
|
Bopp T, Becker C, Klein M, Klein-Hessling
S, Palmetshofer A, Serfling E, Heib v, Becker M, Kubach J, Schmitt
S, et al: Cyclic adenosine monophosphate is a key component of
regulatory T cell-mediated suppression. J Exp Med. 204:1303–1310.
2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hervé JC, Bourmeyster N, Sarrouilhe D and
Duffy HS: Gap junctional complexes: From partners to functions.
Prog Biophys Mol Biol. 94:29–65. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Evans WH and Martin PE: Gap junctions:
Structure and function (Review). Mol Membr Biol. 19:121–136. 2002.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Oviedo-Orta E and Howard Evans W: Gap
junctions and connexin-mediated communication in the immune system.
Biochim Biophys Acta. 1662:102–112. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matsue H, Yao J, Matsue K, Nagasaka A,
Sugiyama H, Aoki R, Kitamura M and Shimada S: Gap junction-mediated
intercellular communication between dendritic cells (DCs) is
required for effective activation of DCs. J Immunol. 176:181–190.
2006. View Article : Google Scholar
|
15
|
Mendoza-Naranjo A, Saéz PJ, Johansson CC,
Ramírez M, Mandakovic D, Pereda C, López MN, Kiessling R, Sáez JC
and Salazar-Onfray F: Functional gap junctions facilitate melanoma
antigen transfer and cross-presentation between human dendritic
cells. J Immunol. 178:6949–6957. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Oviedo-Orta E, Perreau M, Evans WH and
Potolicchio I: Control of the proliferation of activated
CD4+ T cells by connexins. J Leukoc Biol. 88:79–86.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mendoza-Naranjo A, Bouma G, Pereda C,
Ramírez M, Webb KF, Tittarelli A, López MN, Kalergis AM, Thrasher
AJ, Becker DL, et al: Functional gap junctions accumulate at the
immunological synapse and contribute to T cell activation. J
Immunol. 187:3121–3132. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rodríguez-Iturbe B, Quiroz Y, Nava M,
Bonet L, Chávez M, Herrera-Acosta J, Johnson RJ and Pons HA:
Reduction of renal immune cell infiltration results in blood
pressure control in genetically hypertensive rats. Am J Physiol
Renal Physiol. 282:F191–F201. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bermudez-Fajardo A, Ylihärsilä M, Evans
WH, Newby AC and Oviedo-Orta E: CD4+ T lymphocyte subsets express
connexin 43 and establish gap junction channel communication with
macrophages in vitro. J Leukoc Biol. 82:608–612. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang X, Johnson AC, Sasser JM, Williams
JM, Solberg Woods LC and Garrett MR: Spontaneous one-kidney rats
are more susceptible to develop hypertension by DOCA-NaCl and
subsequent kidney injury compared with uninephrectomized rats. Am J
Physiol Renal Physiol. 310:F1054–F1064. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Craici IM, Wagner SJ, Weissgerber TL,
Grande JP and Garovic VD: Advances in the pathophysiology of
pre-eclampsia and related podocyte injury. Kidney Int. 86:275–285.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rodríguez-Iturbe B, Pons H, Quiroz Y and
Johnson RJ: The immunological basis of hypertension. Am J
Hypertens. 27:1327–1337. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
McMaster WG, Kirabo A, Madhur MS and
Harrison DG: Inflammation, immunity, and hypertensive end-organ
damage. Circ Res. 116:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Alvarez V, Quiroz Y, Nava M, Pons H and
Rodríguez-Iturbe B: Overload proteinuria is followed by
salt-sensitive hypertension caused by renal infiltration of immune
cells. Am J Physiol Renal Physiol. 283:F1132–F1141. 2002.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bravo Y, Quiroz Y, Ferrebuz A, vaziri ND
and Rodríguez-Iturbe B: Mycophenolate mofetil administration
reduces renal inflammation, oxidative stress, and arterial pressure
in rats with lead-induced hypertension. Am J Physiol Renal Physiol.
293:F616–F623. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hamza SM and Kaufman S: Role of spleen in
integrated control of splanchnic vascular tone: Physiology and
pathophysiology. Can J Physiol Pharmacol. 87:1–7. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liezmann C, Stock D and Peters EM: Stress
induced neuroendocrine-immune plasticity: A role for the spleen in
peripheral inflammatory disease and inflammaging.
Dermatoendocrinol. 4:271–279. 2012. View Article : Google Scholar
|
28
|
Carnevale D, Pallante F, Fardella V,
Fardella S, Iacobucci R, Federici M, Cifelli G, De Lucia M and
Lembo G: The angiogenic factor PlGF mediates a neuroimmune
interaction in the spleen to allow the onset of hypertension.
Immunity. 41:737–752. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mebius RE and Kraal G: Structure and
function of the spleen. Nat Rev Immunol. 5:606–616. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Harrison DG, Guzik TJ, Lob HE, Madhur MS,
Marvar PJ, Thabet SR, Vinh A and Weyand CM: Inflammation, immunity,
and hypertension. Hypertension. 57:132–140. 2011. View Article : Google Scholar
|
31
|
Quiroz Y, Johnson RJ and Rodríguez-Iturbe
B: The role of T cells in the pathogenesis of primary hypertension.
Nephrol Dial Transplant. 27(Suppl 4): iv2–iv5. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schiffrin EL: Immune mechanisms in
hypertension and vascular injury. Clin Sci (Lond). 126:267–274.
2014. View Article : Google Scholar
|
33
|
Pascual VH, Oparil S, Eldridge JH, Jin H,
Bost KL and Pascual DW: Spontaneously hypertensive rat: lymphoid
depression is age dependent and mediated via a mononuclear cell
subpopulation. Am J Physiol. 262:R1–R7. 992PubMed/NCBI
|
34
|
Matrougui K, Abd Elmageed Z, Kassan M,
Choi S, Nair D, Gonzalez-Villalobos RA, Chentoufi AA, Kadowitz P,
Belmadani S and Partyka M: Natural regulatory T cells control
coronary arteriolar endothelial dysfunction in hypertensive mice.
Am J Pathol. 178:434–441. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Neijssen J, Pang B and Neefjes J: Gap
junction-mediated inter-cellular communication in the immune
system. Prog Biophys Mol Biol. 94:207–218. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Montecino-Rodriguez E, Leathers H and
Dorshkind K: Expression of connexin 43 (Cx43) is critical for
normal hematopoiesis. Blood. 96:917–924. 2000.PubMed/NCBI
|
37
|
Kuczma M, Lee JR and Kraj P: Connexin 43
signaling enhances the generation of Foxp3+ regulatory T cells. J
Immunol. 187:248–257. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Oviedo-Orta E, Hoy T and Evans WH:
Intercellular communication in the immune system: Differential
expression of connexin40 and 43, and perturbation of gap junction
channel functions in peripheral blood and tonsil human lymphocyte
subpopulations. Immunology. 99:578–590. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lombardi VR, Martínez E, Chacón R,
Etcheverría I and Cacabelos R: Effects of FR-91 on immune cells
from healthy individuals and from patients with non-Hodgkin
lymphoma. J Biomed Biotechnol. 187015:2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lin CM, Jeng CR, Hsiao SH, Lee Y, Tsai YC,
Chia MY and Pang VF: Monocyte-derived dendritic cells enhance cell
proliferation and porcine circovirus type 2 replication in
concanavalin A-stimulated swine peripheral blood lymphocytes in
vitro. Vet Immunol Immunopathol. 145:368–378. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pollok S, Pfeiffer AC, Lobmann R, Wright
CS, Moll I, Martin PE and Brandner JM: Connexin 43 mimetic peptide
Gap27 reveals potential differences in the role of Cx43 in wound
repair between diabetic and non-diabetic cells. J Cell Mol Med.
15:861–873. 2011. View Article : Google Scholar
|
42
|
Gadonski G, LaMarca BB, Sullivan E,
Bennett W, Chandler D and Granger JP: Hypertension produced by
reductions in uterine perfusion in the pregnant rat: Role of
interleukin 6. Hypertension. 48:711–716. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lee DL, Sturgis LC, Labazi H, Osborne JB
Jr, Fleming C, Pollock JS, Manhiani M, Imig JD and Brands MW:
Angiotensin II hypertension is attenuated in interleukin-6 knockout
mice. Am J Physiol Heart Circ Physiol. 290:H935–H940. 2006.
View Article : Google Scholar
|
44
|
Coles B, Fielding CA, Rose-John S,
Scheller J, Jones SA and O'Donnell VB: Classic interleukin-6
receptor signaling and interleukin-6 trans-signaling differentially
control angiotensin II-dependent hypertension, cardiac signal
transducer and activator of transcription-3 activation, and
vascular hypertrophy in vivo. Am J Pathol. 171:315–325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Brands MW, Banes-Berceli AK, Inscho EW,
Al-Azawi H, Allen AJ and Labazi H: Interleukin 6 knockout prevents
angiotensin II hypertension: Role of renal vasoconstriction and
janus kinase 2/signal transducer and activator of transcription 3
activation. Hypertension. 56:879–884. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Crosswhite P and Sun Z: Ribonucleic acid
interference knockdown of interleukin 6 attenuates cold-induced
hypertension. Hypertension. 55:1484–1491. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Luther JM, Gainer JV, Murphey LJ, Yu C,
Vaughan DE, Morrow JD and Brown NJ: Angiotensin II induces
interleukin-6 in humans through a mineralocorticoid
receptor-dependent mechanism. Hypertension. 48:1050–1057. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kumral ZN, Sener G, Ozgur S, Koc M,
Suleymanoglu S, Hurdag C and Yegen BC: Regular exercise alleviates
renovascular hypertension-induced cardiac/endothelial dysfunction
and oxidative injury in rats. J Physiol Pharmacol. 67:45–55.
2016.PubMed/NCBI
|
49
|
Oviedo-Orta E, Gasque P and Evans WH:
Immunoglobulin and cytokine expression in mixed lymphocyte cultures
is reduced by disruption of gap junction intercellular
communication. FASEB J. 15:768–774. 2001. View Article : Google Scholar : PubMed/NCBI
|
50
|
Eugenín EA, Brañes MC, Berman JW and Sáez
JC: TNF-alpha plus IFN-gamma induce connexin43 expression and
formation of gap junctions between human monocytes/macrophages that
enhance physiological responses. J Immunol. 170:1320–1328. 2003.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Vogel SZ, Schlickeiser S, Jürchott K,
Akyuez L, Schumann J, Appelt C, Vogt K, Schröder M, Vaeth M,
Berberich-Siebelt F, et al: TCAIM decreases T cell priming capacity
of dendritic cells by inhibiting TLR-induced Ca2+ influx and IL-2
production. J Immunol. 194:3136–3146. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Litvinov IS and Mersiyanova IV: The role
of extracellular calcium ions reduction in T cell activation in
human peripheral blood. Bioorg Khim. 41:432–442. 2015.PubMed/NCBI
|
53
|
Ring S, Karakhanova S, Johnson T, Enk AH
and Mahnke K: Gap junctions between regulatory T cells and
dendritic cells prevent sensitization of CD8(+) T cells. J Allergy
Clin Immunol. 125:237–246. e1–e7. 2010. View Article : Google Scholar : PubMed/NCBI
|