1
|
Bauters C and Isner JM: The biology of
restenosis. Prog Cardiovasc Dis. 40:107–116. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yahagi K, Otsuka F, Sakakura K, Sanchez
OD, Kutys R, Ladich E, Kolodgie FD, Virmani R and Joner M:
Pathophysiology of superficial femoral artery in-stent restenosis.
J Cardiovasc Surg Torino: 55. pp. 307–323. 2014
|
3
|
McNamara CA, Sarembock IJ, Bachhuber BG,
Stouffer GA, Ragosta M, Barry W, Gimple LW, Powers ER and Owens GK:
Thrombin and vascular smooth muscle cell proliferation:
Implications for atherosclerosis and restenosis. Semin Thromb
Hemost. 22:139–144. 1996. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sheikh AQ, Lighthouse JK and Greif DM:
Recapitulation of developing artery muscularization in pulmonary
hypertension. Cell Reports. 6:809–817. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Satoh K, Satoh T, Kikuchi N, Omura J,
Kurosawa R, Suzuki K, Sugimura K, Aoki T, Nochioka K, Tatebe S, et
al: Basigin mediates pulmonary hypertension by promoting
inflammation and vascular smooth muscle cell proliferation. Circ
Res. 115:738–750. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Donners MM, Daemen MJ, Cleutjens KB and
Heeneman S: Inflammation and restenosis: Implications for therapy.
Ann Med. 35:523–531. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Drachman DE and Simon DI: Inflammation as
a mechanism and therapeutic target for in-stent restenosis. Curr
Atheroscler Rep. 7:44–49. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schillinger M and Minar E: Restenosis
after percutaneous angioplasty: The role of vascular inflammation.
Vasc Health Risk Manag. 1:73–78. 2005. View Article : Google Scholar
|
9
|
Tanaskovic S, Isenovic ER and Radak D:
Inflammation as a marker for the prediction of internal carotid
artery restenosis following eversion endarterectomy - evidence from
clinical studies. Angiology. 62:535–542. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Parker M, Mohankumar KM, Punchihewa C,
Weinlich R, Dalton JD, Li Y, Lee R, Tatevossian RG, Phoenix TN,
Thiruvenkatam R, et al: C11orf95-RELA fusions drive oncogenic NF-κB
signalling in ependymoma. Nature. 506:451–455. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Suzuki J, Tezuka D, Morishita R and Isobe
M: An initial case of suppressed restenosis with nuclear
factor-kappa B decoy transfection after percutaneous coronary
intervention. J Gene Med. 11:89–91. 2009. View Article : Google Scholar
|
12
|
Ohtani K, Egashira K, Nakano K, Zhao G,
Funakoshi K, Ihara Y, Kimura S, Tominaga R, Morishita R and
Sunagawa K: Stent-based local delivery of nuclear factor-kappaB
decoy attenuates in-stent restenosis in hypercholesterolemic
rabbits. Circulation. 114:2773–2779. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Beitzinger M and Meister G: Preview.
MicroRNAs: From decay to decoy. Cell. 140:612–614. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gareri C, De Rosa S and Indolfi C:
MicroRNAs for restenosis and thrombosis after vascular injury. Circ
Res. 118:1170–1184. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lv J, Wang L, Zhang J, Lin R, Wang L, Sun
W, Wu H and Xin S: Long noncoding RNA H19-derived miR-675
aggravates restenosis by targeting PTEN. Biochem Biophys Res
Commun: Jan. 4:2017Epub ahead of print. View Article : Google Scholar
|
16
|
Stein JJ, Iwuchukwu C, Maier KG and Gahtan
V: Thrombospondin-1-induced vascular smooth muscle cell migration
and proliferation are functionally dependent on microRNA-21.
Surgery. 155:228–233. 2014. View Article : Google Scholar
|
17
|
Li Y, Yan L, Zhang W, Hu N, Chen W, Wang
H, Kang M and Ou H: MicroRNA-21 inhibits platelet-derived growth
factor-induced human aortic vascular smooth muscle cell
proliferation and migration through targeting activator protein-1.
Am J Transl Res. 6:507–516. 2014.PubMed/NCBI
|
18
|
Muthiah M, Islam MA, Cho CS, Hwang JE,
Chung IJ and Park IK: Substrate-mediated delivery of microRNA-145
through a polysorbitol-based osmotically active transporter
suppresses smooth muscle cell proliferation: Implications for
restenosis treatment. J Biomed Nanotechnol. 10:571–579. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Santulli G, Wronska A, Uryu K, Diacovo TG,
Gao M, Marx SO, Kitajewski J, Chilton JM, Akat KM, Tuschl T, et al:
A selective microRNA-based strategy inhibits restenosis while
preserving endothelial function. J Clin Invest. 124:4102–4114.
2014. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Mogilyansky E and Rigoutsos I: The
miR-17/92 cluster: A comprehensive update on its genomics,
genetics, functions and increasingly important and numerous roles
in health and disease. Cell Death Differ. 20:1603–1614. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mendell JT: miRiad roles for the miR-17-92
cluster in development and disease. Cell. 133:217–222. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Z, Wu J, Yang C, Fan P, Balazs L,
Jiao Y, Lu M, Gu W, Li C, Pfeffer LM, et al: DiGeorge syndrome
critical region 8 (DGCR8) protein-mediated microRNA biogenesis is
essential for vascular smooth muscle cell development in mice. J
Biol Chem. 287:19018–19028. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Luo T, Cui S, Bian C and Yu X: Crosstalk
between TGF-β/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92
cluster in carotid artery restenosis. Mol Cell Biochem.
389:169–176. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Maier KG, Ruhle B, Stein JJ, Gentile KL,
Middleton FA and Gahtan V: Thrombospondin-1 differentially
regulates microRNAs in vascular smooth muscle cells. Mol Cell
Biochem. 412:111–117. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Weinberg RA: The retinoblastoma protein
and cell cycle control. Cell. 81:323–330. 1995. View Article : Google Scholar : PubMed/NCBI
|
26
|
Burke JR, Hura GL and Rubin SM: Structures
of inactive retinoblastoma protein reveal multiple mechanisms for
cell cycle control. Genes Dev. 26:1156–1166. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
28
|
Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T,
Wang H, Xuan Q, Chen P, Xu J, et al: miR-17-3p contributes to
exercise-induced cardiac growth and protects against myocardial
ischemia-reperfusion injury. Theranostics. 7:664–676. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen T, Zhou Q, Tang H, Bozkanat M, Yuan
JX, Raj JU and Zhou G: miR-17/20 controls prolyl hydroxylase 2
(HD2)/hypoxia-inducible factor 1 (HIF1) to regulate pulmonary
artery smooth muscle cell proliferation. J Am Heart Assoc.
5:e0045102016. View Article : Google Scholar
|
30
|
Blais A and Dynlacht BD: Hitting their
targets: An emerging picture of E2F and cell cycle control. Curr
Opin Genet Dev. 14:527–532. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wong JV, Dong P, Nevins JR, Mathey-Prevot
B and You L: Network calisthenics: Control of E2F dynamics in cell
cycle entry. Cell Cycle. 10:3086–3094. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Essers J, Theil AF, Baldeyron C, van
Cappellen WA, Houtsmuller AB, Kanaar R and Vermeulen W: Nuclear
dynamics of PCNA in DNA replication and repair. Mol Cell Biol.
25:9350–9359. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fischer M and Müller GA: Cell cycle
transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev
Biochem Mol Biol. Aug 11–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
34
|
Korenjak M and Brehm A: E2F-Rb complexes
regulating transcription of genes important for differentiation and
development. Curr Opin Genet Dev. 15:520–527. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schaal C, Pillai S and Chellappan SP: The
Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and
metastasis. Adv Cancer Res. 121:147–182. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Giangrande PH, Zhang J, Tanner A, Eckhart
AD, Rempel RE, Andrechek ER, Layzer JM, Keys JR, Hagen PO, Nevins
JR, et al: Distinct roles of E2F proteins in vascular smooth muscle
cell proliferation and intimal hyperplasia. Proc Natl Acad Sci USA.
104:12988–12993. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Araki K, Kawauchi K and Tanaka N:
IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by
a novel Rb-independent suppression system for E2F transcription
factors. Oncogene. 27:5696–5705. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kravtsova-Ivantsiv Y, Shomer I,
Cohen-Kaplan V, Snijder B, Superti-Furga G, Gonen H, Sommer T, Ziv
T, Admon A, Naroditsky I, et al: KPC1-mediated ubiquitination and
proteasomal processing of NF-κB1 105 to 50 restricts tumor growth.
Cell. 161:333–347. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang X, Liu S, Hu T, Liu S, He Y and Sun
S: Up-regulated microRNA-143 transcribed by nuclear factor kappa B
enhances hepatocarcinoma metastasis by repressing fibronectin
expression. Hepatology. 50:490–499. 2009. View Article : Google Scholar : PubMed/NCBI
|