1
|
Spangenberg EE and Green KN: Inflammation
in Alzheimer's disease: Lessons learned from microglia-depletion
models. Brain Behav Immun. 61:1–11. 2017. View Article : Google Scholar
|
2
|
De Hoz R, Salobrar-Garcia E, Salazar JJ,
Roias B, Ajoy D, Lopez-Cuenca I, Rojas P, Trivino A and Ramierz JM:
The role of microglial in retinal neurodegeneration: Alzheimer's
disease, Parkinson, and glaucoma. Front Aging Neurosci. 9:2142017.
View Article : Google Scholar
|
3
|
Larochelle A, Bellavance MA and Rivest S:
Role of adaptor protein MyD88 in TLR-mediated preconditioning and
neuro-protection after acute excitotoxicity. Brain Behav Immun.
46:221–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tang Y and Le W: Differential role of M1
and M2 microglia in neurodegenerative diseases. Mol Neurobiol.
53:1181–1194. 2016. View Article : Google Scholar
|
5
|
Nakagawa Y and Chiba K: Diversity and
plasticity of microglial cells in psychiatric and neurological
disorders. Pharmacol Ther. 154:21–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kaur CG, Rathnasamy and Ling EA: Biology
of microglial in the developing Brain. J Neuropathol Exp Neurol.
76:736–753. 2017.PubMed/NCBI
|
7
|
Moss DW and Bates TE: Activation of murine
microglial cell lines by lipopolysaccharide and interferon-gamma
causes NO-mediated decreases in mitochondrial and cellular
function. Eur J Neurosci. 13:529–538. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rangarajan P, Karthikeyan A and Dheen ST:
Role of dietary phenols in mitigating microglia-mediated
neuroinflammation. Neuromolecular Med. 18:453–464. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Acharyya S, Villalta SA, Bakkar N,
Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S,
Sahenk Z, et al: Interplay of IKK/NF-kappaB signaling in
macrophages and myofibers promotes muscle degeneration in Duchenne
muscular dystrophy. J Clin Invest. 117:889–901. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sweeney SE and Firestein GS: Signal
transduction in rheumatoid arthritis. Curr Opin Rheumatol.
16:231–237. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jangra A, Kwatra M, Singh T, Pant R,
Kushwah P, Ahmed S, Dwivedi D, Saroha B and Lahkar M: Edaravone
alleviates cisplatin-induced neurobehavioral deficits via
modulation of oxidative stress and inflammatory mediators in the
rat hippo-campus. Eur J Pharmacol. 791:51–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Koh K and Kim J, Jang YJ, Yoon K, Cha Y,
Lee HJ and Kim J: Transcription factor Nrf2 suppresses LPS-induced
hyperactivation of BV-2 microglial cells. J Neuroimmunol.
233:160–167. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Talalay P: Chemoprotection against cancer
by induction of phase 2 enzymes. Biofactors. 12:5–11. 2000.
View Article : Google Scholar
|
14
|
Zhang J, Fu B, Zhang X, Zhang L, Bai X,
Zhao X, Chen L, Cui L, Zhu C, Wang L, et al: Bicyclol upregulates
transcription factor Nrf2, HO-1 expression and protects rat brains
against focal ischemia. Brain Res Bull. 100:38–43. 2014. View Article : Google Scholar
|
15
|
Innamorato NG, Rojo AI, García-Yagüe AJ,
Yamamoto M, de Ceballos ML and Cuadrado A: The transcription factor
Nrf2 is a therapeutic target against brain inflammation. J Immunol.
181:680–689. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Parada E, Buendia I, Navarro E, Avendaño
C, Egea J and López MG: Microglial HO-1 induction by curcumin
provides antioxidant, antineuroinflammatory, and glioprotective
effects. Mol Nutr Food Res. 59:1690–1700. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kunnumakkara AB, Bordoloi D, Padmavathi G,
Monisha J, Roy NK, Prasad S and Aggarwal BB: Curcumin, the golden
nutraceutical: Multitargeting for multiple chronic diseases. Br J
Pharmacol. 174:1325–1348. 2017. View Article : Google Scholar
|
18
|
Tsai YM, Chien CF, Lin LC and Tsai TH:
Curcumin and its nano-formulation: The kinetics of tissue
distribution and blood-brain barrier penetration. Int J Pharm.
416:331–338. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Garcia-Alloza M, Borrelli LA, Rozkalne A,
Hyman BT and Bacskai: Curcumin labels amyloid pathology in vivo,
disrupts existing plaques, and partially restores distorted
neurites in an Alzheimer mouse model. J Neurochem. 102:1095–1104.
2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Prakobwong S, Khoontawad J, Yongvanit P,
Pairojkul C, Hiraku Y, Sithithaworn P, Pinlaor P, Aggarwal BB and
Pinlaor S: Curcumin decreases cholangiocarcinogenesis in hamsters
by suppressing inflammation-mediated molecular events related to
multistep carcinogenesis. Int J Cancer. 129:88–100. 2011.
View Article : Google Scholar
|
21
|
Zhou J, Miao H, Li X, Hu Y, Sun H and Hou
Y: Curcumin inhibits placental inflammation to ameliorate
LPS-induced adverse pregnancy outcomes in mice via upregulation of
phosphorylated Akt. Inflamm Res. 66:177–185. 2017. View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Zhou D, Huang C, Lin Z, Zhan S, Kong L,
Fang C and Li J: Macrophage polarization and function with emphasis
on the evolving roles of coordinated regulation of cellular
signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar
|
24
|
Jung JS, Choi MJ, Lee YY, Moon BI, Park JS
and Kim HS: Suppression of lipopolysaccharide-induced
neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1
signaling pathway modulation. J Agric Food Chem. 65:373–382. 2017.
View Article : Google Scholar
|
25
|
Brown GC: Nitric oxide and neuronal death.
Nitric Oxide. 23:153–165. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dzamko N, Gysbers A, Perera G, Bahar A,
Shankar A, Gao J, Fu Y and Halliday GM: Toll-like receptor 2 is
increased in neurons in Parkinson's disease brain and may
contribute to alpha-synuclein pathology. Acta Neuropathol.
133:303–319. 2017. View Article : Google Scholar
|
27
|
Fallarino F, Gargaro M, Mondanell G,
Downer EJ, Hossain MJ and Gran B: Delineating the role of Toll-like
receptors in the neuro-inflammation model EAE. Methods Mol Biol.
1390:383–411. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hossain MJ, Tanasescu R and Gran B: Innate
immune regulation of autoimmunity in multiple sclerosis: Focus on
the role of Toll-like receptor 2. J Neuroimmunol. 304:11–20. 2017.
View Article : Google Scholar
|
29
|
Jin S, Kim JG, Park JW, Koch M, Horvath TL
and Lee BJ: Hypothalamic TLR2 triggers sickness behavior via a
microglia-neuronal axis. Sci Rep. 6:294242016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Geloso MC, Corvino V, Marchese E, Serrano
A, Michetti F and D' Ambrosi N: The dual role of microglia in ALS:
Mechanisms and therapeutic approaches. Front Aging Neurosci.
9:2422017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H,
Chen D, Fu C, Zheng L, Zhen X, et al: Induction of
COX-2-PGE2 synthesis by activation of the MAPK/ERK
pathway contributes to neuronal death triggered by TDP-43-depleted
microglia. Cell Death Dis. 6:e17022015. View Article : Google Scholar
|
32
|
Liu Y and Zhang Z, Luo B, Schluesener HJ
and Zhang Z: Lesional accumulation of heme oxygenase-1+
microglia/macrophages in rat traumatic brain injury. Neuroreport.
24:281–286. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fernández P, Guillén MI, Gomar F and
Alcaraz MJ: Expression of heme oxygenase-1 and regulation by
cytokines in human osteoarthritic chondrocytes. Biochem Pharmacol.
66:2049–2052. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jayasooriya RG, Lee KT, Choi YH, Moon SK,
Kim WJ and Kim GY: Antagonistic effects of acetylshikonin on
LPS-induced NO and PGE2 production in BV2 microglial
cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and
activation of Nrf2-dependent HO-1. In Vitro Cell Dev Biol Anim.
51:975–986. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rojo AI, Innamorato NG, Martín-Moreno AM,
De Ceballos ML, Yamamoto M and Cuadrado A: Nrf2 regulates
microglial dynamics and neuroinflammation in experimental
Parkinson's disease. Glia. 58:588–598. 2010. View Article : Google Scholar
|
36
|
Kobayashi EH, Suzuki T, Funayama R,
Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi
H, Nakayama K, et al: Nrf2 suppresses macrophage inflammatory
response by blocking proinflammatory cytokine transcription. Nat
Commun. 7:116242016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wardyn JD, Ponsford AH and Sanderson CM:
Dissecting molecular cross-talk between Nrf2 and NF-kappaB response
pathways. Biochem Soc Trans. 43:621–626. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chantong B, Kratschmar DV, Lister A and
Odermatt A: Dibutyltin promotes oxidative stress and increases
inflammatory mediators in BV-2 microglia cells. Toxicol Lett.
230:177–187. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liou CJ, Len WB, Wu SJ, Lin CF, Wu XL and
Huang WC: Casticin inhibits COX-2 and iNOS expression via
suppression of NF-kappaB and MAPK signaling in
lipopolysaccharide-stimulated mouse macrophages. J Ethnopharmacol.
158:310–316. 2014. View Article : Google Scholar
|