1
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett
DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP,
Fullerton HJ, et al Writing Group Members; American Heart
Association; Statistics Committee: Stroke Statistics Subcommittee:
Heart Disease and Stroke Statistics-2016 Update: A Report From the
American Heart Association. Circulation. 133:e38–e360. 2016.
View Article : Google Scholar
|
2
|
Murry CE, Reinecke H and Pabon LM:
Regeneration gaps: Observations on stem cells and cardiac repair. J
Am Coll Cardiol. 47:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Linzbach AJ: Heart failure from the point
of view of quantitative anatomy. Am J Cardiol. 5:370–382. 1960.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Poss KD, Wilson LG and Keating MT: Heart
regeneration in zebrafish. Science. 298:2188–2190. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Porrello ER, Mahmoud AI, Simpson E, Hill
JA, Richardson JA, Olson EN and Sadek HA: Transient regenerative
potential of the neonatal mouse heart. Science. 331:1078–1080.
2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Naqvi N, Li M, Calvert JW, Tejada T,
Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD,
et al: A proliferative burst during preadolescence establishes the
final cardiomyocyte number. Cell. 157:795–807. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mollova M, Bersell K, Walsh S, Savla J,
Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan
S, et al: Cardiomyocyte proliferation contributes to heart growth
in young humans. Proc Natl Acad Sci USA. 110:1446–1451. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Gan J, Sonntag HJ, Tang MK, Cai D and Lee
KK: Integrative Analysis of the Developing Postnatal Mouse Heart
Transcriptome. PLoS One. 10:e01332882015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
10
|
Wright GW and Simon RM: A random variance
model for detection of differential gene expression in small
microarray experiments. Bioinformatics. 19:2448–2455. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang H, Crawford N, Lukes L, Finney R,
Lancaster M and Hunter KW: Metastasis predictive signature profiles
pre-exist in normal tissues. Clin Exp Metastasis. 22:593–603. 2005.
View Article : Google Scholar
|
12
|
Clarke R, Ressom HW, Wang A, Xuan J, Liu
MC, Gehan EA and Wang Y: The properties of high-dimensional data
spaces: Implications for exploring gene and protein expression
data. Nat Rev Cancer. 8:37–49. 2008. View Article : Google Scholar :
|
13
|
Eisen MB, Spellman PT, Brown PO and
Botstein D: Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gene Ontology Consortium: The Gene
Ontology (GO) project in 2006. Nucleic Acids Res. 34:D322–D326.
2006. View Article : Google Scholar
|
15
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: The Gene Ontology Consortium: Gene ontology: Tool for the
unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dupuy D, Bertin N, Hidalgo CA, Venkatesan
K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A, et al:
Genome-scale analysis of in vivo spatiotemporal promoter activity
in Caenorhabditis elegans. Nat Biotechnol. 25:663–668. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Schlitt T, Palin K, Rung J, Dietmann S,
Lappe M, Ukkonen E and Brazma A: From gene networks to gene
function. Genome Res. 13:2568–2576. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kanehisa M, Goto S, Kawashima S, Okuno Y
and Hattori M: The KEGG resource for deciphering the genome.
Nucleic Acids Res. 32:D277–D280. 2004. View Article : Google Scholar :
|
19
|
Yi M, Horton JD, Cohen JC, Hobbs HH and
Stephens RM: WholePathwayScope: A comprehensive pathway-based
analysis tool for high-throughput data. BMC Bioinformatics.
7:302006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Draghici S, Khatri P, Tarca AL, Amin K,
Done A, Voichita C, Georgescu C and Romero R: A systems biology
approach for pathway level analysis. Genome Res. 17:1537–1545.
2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ramoni MF, Sebastiani P and Kohane IS:
Cluster analysis of gene expression dynamics. Proc Natl Acad Sci
USA. 99:9121–9126. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Miller LD, Long PM, Wong L, Mukherjee S,
McShane LM and Liu ET: Optimal gene expression analysis by
microarrays. Cancer Cell. 2:353–361. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dysvik B and Jonassen I: J-Express:
exploring gene expressiondata using Java. Bioinformatics.
17:369–370. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jansen R, Greenbaum D and Gerstein M:
Relating whole-genome expression data with protein-protein
interactions. Genome Res. 12:37–46. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li C and Li H: Network-constrained
regularization and variable selection for analysis of genomic data.
Bioinformatics. 24:1175–1182. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wei Z and Li H: A Markov random field
model for network-based analysis of genomic data. Bioinformatics.
23:1537–1544. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang JD and Wiemann S: KEGGgraph: A graph
approach to KEGG PATHWAY in R and bioconductor. Bioinformatics.
25:1470–1471. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Spirin V and Mirny LA: Protein complexes
and functional modules in molecular networks. Proc Natl Acad Sci
USA. 100:12123–12128. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Burton PB, Raff MC, Kerr P, Yacoub MH and
Barton PJ: An intrinsic timer that controls cell-cycle withdrawal
in cultured cardiac myocytes. Dev Biol. 216:659–670. 1999.
View Article : Google Scholar
|
30
|
Tane S, Kubota M, Okayama H, Ikenishi A,
Yoshitome S, Iwamoto N, Satoh Y, Kusakabe A, Ogawa S, Kanai A, et
al: Repression of cyclin D1 expression is necessary for the
maintenance of cell cycle exit in adult mammalian cardiomyocytes. J
Biol Chem. 289:18033–18044. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tane S, Ikenishi A, Okayama H, Iwamoto N,
Nakayama KI and Takeuchi T: CDK inhibitors, p21(Cip1) and
p27(Kip1), participate in cell cycle exit of mammalian
cardiomyocytes. Biochem Biophys Res Commun. 443:1105–1109. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lin Z, Zhou P, von Gise A, Gu F, Ma Q,
Chen J, Guo H, van Gorp PR, Wang DZ and Pu WT: Pi3kcb links
Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte
proliferation and survival. Circ Res. 116:35–45. 2015. View Article : Google Scholar :
|
33
|
Marshall-Clarke S, Reen D, Tasker L and
Hassan J: Neonatal immunity: How well has it grown up. Immunol
Today. 21:35–41. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rochais F, Sturny R, Chao CM, Mesbah K,
Bennett M, Mohun TJ, Bellusci S and Kelly RG: FGF10 promotes
regional foetal cardiomyocyte proliferation and adult cardiomyocyte
cell-cycle re-entry. Cardiovasc Res. 104:432–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Thomas PS, Rajderkar S, Lane J, Mishina Y
and Kaartinen V: AcvR1-mediated BMP signaling in second heart field
is required for arterial pole development: Implications for
myocardial differentiation and regional identity. Dev Biol.
390:191–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen H, Shi S, Acosta L, Li W, Lu J, Bao
S, Chen Z, Yang Z, Schneider MD, Chien KR, et al: BMP10 is
essential for maintaining cardiac growth during murine
cardiogenesis. Development. 131:2219–2231. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ebelt H, Hufnagel N, Neuhaus P, Neuhaus H,
Gajawada P, Simm A, Müller-Werdan U, Werdan K and Braun T:
Divergent siblings: E2F2 and E2F4 but not E2F1 and E2F3 induce DNA
synthesis in cardiomyocytes without activation of apoptosis. Circ
Res. 96:509–517. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bieniek J, Childress C, Swatski MD and
Yang W: COX-2 inhibitors arrest prostate cancer cell cycle
progression by downregulation of kinetochore/centromere proteins.
Prostate. 74:999–1011. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yeh C, Li A, Chuang JZ, Saito M, Cáceres A
and Sung CH: IGF-1 activates a cilium-localized noncanonical Gβγ
signaling pathway that regulates cell-cycle progression. Dev Cell.
26:358–368. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Berger J, Tarakci H, Berger S, Li M, Hall
TE, Arner A and Currie PD: Loss of Tropomodulin4 in the zebrafish
mutant träge causes cytoplasmic rod formation and muscle weakness
reminiscent of nemaline myopathy. Dis Model Mech. 7:1407–1415.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Segers VF and Lee RT: Stem-cell therapy
for cardiac disease. Nature. 451:937–942. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Passier R, van Laake LW and Mummery CL:
Stem-cell-based therapy and lessons from the heart. Nature.
453:322–329. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bearzi C, Rota M, Hosoda T, Tillmanns J,
Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins
RW, Lecapitaine N, et al: Human cardiac stem cells. Proc Natl Acad
Sci USA. 104:14068–14073. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kattman SJ, Witty AD, Gagliardi M, Dubois
NC, Niapour M, Hotta A, Ellis J and Keller G: Stage-specific
optimization of activin/nodal and BMP signaling promotes cardiac
differentiation of mouse and human pluripotent stem cell lines.
Cell Stem Cell. 8:228–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Horn MA and Trafford AW: Aging and the
cardiac collagen matrix: Novel mediators of fibrotic remodelling. J
Mol Cell Cardiol. 93:175–185. 2016. View Article : Google Scholar :
|
46
|
Lindsey ML, Iyer RP, Jung M,
DeLeon-Pennell KY and Ma Y: Matrix metalloproteinases as input and
output signals for post-myocardial infarction remodeling. J Mol
Cell Cardiol. 91:134–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Vanhoutte D and Heymans S: TIMPs and
cardiac remodeling: 'Embracing the MMP-independent-side of the
family'. J Mol Cell Cardiol. 48:445–453. 2010. View Article : Google Scholar
|
48
|
Zhang S, Chang L, Alfieri C, Zhang Z, Yang
J, Maslen S, Skehel M and Barford D: Molecular mechanism of APC/C
activation by mitotic phosphorylation. Nature. 533:260–264. 2016.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Yamada K, Tamamori-Adachi M, Goto I,
Iizuka M, Yasukawa T, Aso T, Okazaki T and Kitajima S: Degradation
of p21Cip1 through anaphase-promoting complex/cyclosome and its
activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated
ubiquitylation is inhibited by cyclin-dependent kinase 2 in
cardiomyocytes. J Biol Chem. 286:44057–44066. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Forester CM, Maddox J, Louis JV, Goris J
and Virshup DM: Control of mitotic exit by PP2A regulation of
Cdc25C and Cdk1. Proc Natl Acad Sci USA. 104:19867–19872. 2007.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Franckhauser C, Mamaeva D, Heron-Milhavet
L, Fernandez A and Lamb NJ: Distinct pools of cdc25C are
phosphorylated on specific TP sites and differentially localized in
human mitotic cells. PLoS One. 5:e117982010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Villa Del Campo C, Lioux G, Carmona R,
Sierra R, Muñoz-Chápuli R, Clavería C and Torres M: Myc
overexpression enhances of epicardial contribution to the
developing heart and promotes extensive expansion of the
cardiomyocyte population. Sci Rep. 6:353662016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hollander MC and Fornace AJ Jr: Genomic
instability, centrosome amplification, cell cycle checkpoints and
Gadd45a. Oncogene. 21:6228–6233. 2002. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhan Q, Antinore MJ, Wang XW, Carrier F,
Smith ML, Harris CC and Fornace AJ Jr: Association with Cdc2 and
inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated
protein Gadd45. Oncogene. 18:2892–2900. 1999. View Article : Google Scholar : PubMed/NCBI
|
55
|
Sarkisian MR and Siebzehnrubl D: Abnormal
levels of Gadd45alpha in developing neocortex impair neurite
outgrowth. PLoS One. 7:e442072012. View Article : Google Scholar : PubMed/NCBI
|