1
|
Bamias G, Martin C III, Mishina M, Ross
WG, Rivera-Nieves J, Marini M and Cominelli F: Proinflammatory
effects of TH2 cytokines in a murine model of chronic small
intestinal inflammation. Gastroenterology. 128:654–666. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Fiocchi C: Inflammatory bowel disease:
etiology and pathogenesis. Gastroenterology. 115:182–205. 1998.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Strober W, Fuss IJ and Blumberg RS: The
immunology of mucosal models of inflammation. Annu Rev Immunol.
20:495–549. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Uhlig HH and Powrie F: The role of mucosal
T lymphocytes in regulating intestinal inflammation. Springer Semin
Immunopathol. 27:167–180. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaser A, Zeissig S and Blumberg RS:
Inflammatory bowel disease. Annu Rev Immunol. 28:573–621. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Targan SR: Hanauer Sb, Vandeventer SH,
Lloydmayer and Present D: A short-term study of chimeric monoclonal
antibody CA2 to tumor necrosis factor a for Crohn's disease. N Engl
J Med. 337:1029–1036. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Baumgart DC and Sandborn WJ: Inflammatory
bowel disease: Clinical aspects and established and evolving
therapies. Lancet. 369:1641–1657. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Neurath MF, Fuss I, Kelsall BL, Stüber E
and Strober W: Antibodies to interleukin 12 abrogate established
experimental colitis in mice. J Exp Med. 182:1281–1290. 1995.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ito H, Takazoe M, Fukuda Y, Hibi T,
Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J and Nishimoto
N: A pilot randomized trial of a human anti-interleukin-6 receptor
monoclonal antibody in active Crohn's disease. Gastroenterology.
126:989–996; discussion 947. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Furumatsu K, Nishiumi S, Kawano Y, Ooi M,
Yoshie T, Shiomi Y, Kutsumi H, Ashida H, Fujii-Kuriyama Y, Azuma T,
et al: A role of the aryl hydrocarbon receptor in attenuation of
colitis. Dig Dis Sci. 56:2532–2544. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Monteleone I, Rizzo A, Sarra M, Sica G,
Sileri P, Biancone L, MacDonald TT, Pallone F and Monteleone G:
Aryl hydrocarbon receptor-induced signals upregulate IL-22
production and inhibit inflammation in the gastrointestinal tract.
Gastroenterology. 141:237–248.e1. 2011. View Article : Google Scholar
|
12
|
Ji T, Xu C, Sun L, Yu M, Peng K, Qiu Y,
Xiao W and Yang H: Aryl hydrocarbon receptor activation
downregulates IL-7 and reduces inflammation in a mouse model of
DSS-induced colitis. Dig Dis Sci. 60:1958–1966. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Denis M, Cuthill S, Wikström AC,
Poellinger L and Gustafsson JA: Association of the dioxin receptor
with the Mr 90,000 heat shock protein: A structural kinship with
the glucocorticoid receptor. Biochem Biophys Res Commun.
155:801–807. 1988. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kewley RJ, Whitelaw ML and Chapman-Smith
A: The mammalian basic helix-loop-helix/PAS family of
transcriptional regulators. Int J Biochem Cell Biol. 36:189–204.
2004. View Article : Google Scholar
|
15
|
Sogawa K and Fujii-Kuriyama Y: Ah
receptor, a novel ligand-activated transcription factor. J Biochem.
122:1075–1079. 1997. View Article : Google Scholar
|
16
|
Lee YH, Lin CH, Hsu PC, Sun YY, Huang YJ,
Zhuo JH, Wang CY, Gan YL, Hung CC, Kuan CY, et al: Aryl hydrocarbon
receptor mediates both proinflammatory and anti-inflammatory
effects in lipopolysaccharide-activated microglia. Glia.
63:1138–1154. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang C, Ye Z, Kijlstra A, Zhou Y and Yang
P: Activation of the aryl hydrocarbon receptor affects activation
and function of human monocyte-derived dendritic cells. Clin Exp
Immunol. 177:521–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Barouki R, Coumoul X and
Fernandez-Salguero PM: The aryl hydrocarbon receptor, more than a
xenobiotic-interacting protein. FEBS Lett. 581:3608–3615. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Joe Y, Uddin MJ, Zheng M, Kim HJ, Chen Y,
Yoon NA, Cho GJ, Park JW and Chung HT: Tristetraprolin mediates
anti-inflammatory effect of carbon monoxide against DSS-induced
colitis. PLoS One. 9:e887762014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sanduja S, Blanco FF, Young Le, Kaza V and
Dixon DA: The role of tristetraprolin in cancer and inflammation.
Front Biosci (Landmark Ed). 17:174–188. 2012. View Article : Google Scholar
|
21
|
Fan XC and Steitz JA: Overexpression of
HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo
stability of ARE-containing mRNAs. EMBO J. 17:3448–3460. 1998.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Carballo E, Lai WS and Blackshear PJ:
Feedback inhibition of macrophage tumor necrosis factor-alpha
production by tristetraprolin. Science. 281:1001–1005. 1998.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kratochvill F, Machacek C, Vogl C, Ebner
F, Sedlyarov V, Gruber AR, Hartweger H, Vielnascher R, Karaghiosoff
M, Rülicke T, et al: Tristetraprolin-driven regulatory circuit
controls quality and timing of mRNA decay in inflammation. Mol Syst
Biol. 7:5602011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Molle C, Zhang T, Ysebrant de Lendonck L,
Gueydan C, Andrianne M, Sherer F, Van Simaeys G, Blackshear PJ, Leo
O and Goriely S: Tristetraprolin regulation of interleukin 23 mRNA
stability prevents a spontaneous inflammatory disease. J Exp Med.
210:1675–1684. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Taylor GA, Carballo E, Lee DM, Lai WS,
Thompson MJ, Patel DD, Schenkman DI, Gilkeson GS, Broxmeyer HE,
Haynes BF, et al: A pathogenetic role for TNF alpha in the syndrome
of cachexia, arthritis, and autoimmunity resulting from
tristetraprolin (TTP) deficiency. Immunity. 4:445–454. 1996.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang X, Fan Y, Karyala S, Schwemberger S,
Tomlinson CR, Sartor MA and Puga A: Ligand-independent regulation
of transforming growth factor beta1 expression and cell cycle
progression by the aryl hydrocarbon receptor. Mol Cell Biol.
27:6127–6139. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zago M, Sheridan JA, Nair P, Rico de Souza
A, Gallouzi IE, Rousseau S, Di Marco S, Hamid Q, Eidelman DH and
Baglole CJ: Aryl hydrocarbon receptor-dependent retention of
nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2
expression independent of DNA-binding. PLoS One. 8:e749532013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Kratochvill F, Gratz N, Qualls JE, Van De
Velde LA, Chi H, Kovarik P and Murray PJ: Tristetraprolin limits
inflammatory cytokine production in tumor-associated macrophages in
an mRNA decay-independent manner. Cancer Res. 75:3054–3064. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ross EA, Smallie T, Ding Q, O'Neil JD,
Cunliffe HE, Tang T, Rosner DR, Klevernic I, Morrice NA, Monaco C,
et al: Dominant suppression of inflammation via targeted mutation
of the mRNA destabilizing protein tristetraprolin. J Immunol.
195:265–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Song Z and Pollenz RS: Ligand-dependent
and independent modulation of aryl hydrocarbon receptor
localization, degradation, and gene regulation. Mol Pharmacol.
62:806–816. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pollenz RS: The mechanism of AH receptor
protein down-regulation (degradation) and its impact on AH
receptor-mediated gene regulation. Chem Biol Interact. 141:41–61.
2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Benson JM and Shepherd DM: Aryl
hydrocarbon receptor activation by TCDD reduces inflammation
associated with Crohn's disease. Toxicol Sci. 120:68–78. 2011.
View Article : Google Scholar :
|
34
|
Lai WS, Carballo E, Strum JR, Kennington
EA, Phillips RS and Blackshear PJ: evidence that tristetraprolin
binds to AU-rich elements and promotes the deadenylation and
destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol.
19:4311–4323. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen CY, Gherzi R, Ong SE, Chan EL,
Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M and Karin M:
AU binding proteins recruit the exosome to degrade ARE-containing
mRNAs. Cell. 107:451–464. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mahtani KR, Brook M, Dean JLE, Sully G,
Saklatvala J and Clark AR: Mitogen-activated protein kinase p38
controls the expression and posttranslational modification of
tristetraprolin, a regulator of tumor necrosis factor alpha mRNA
stability. Mol Cell Biol. 21:6461–6469. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chrestensen CA, Schroeder MJ, Shabanowitz
J, Hunt DF, Pelo JW, Worthington MT and Sturgill TW: MAPKAP kinase
2 phosphorylates tristetraprolin on in vivo sites including Ser178,
a site required for 14-3-3 binding. J Biol Chem. 279:10176–10184.
2004. View Article : Google Scholar
|
38
|
Brook M, Tchen CR, Santalucia T, McIlrath
J, Arthur JS, Saklatvala J and Clark AR: Posttranslational
regulation of tristetraprolin subcellular localization and protein
stability by p38 mitogen-activated protein kinase and extracellular
signal-regulated kinase pathways. Mol Cell Biol. 26:2408–2418.
2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hitti E, Iakovleva T, Brook M, Deppenmeier
S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A and
Gaestel M: Mitogen-activated protein kinase-activated protein
kinase 2 regulates tumor necrosis factor mRNA stability and
translation mainly by altering tristetraprolin expression,
stability, and binding to adenine/uridine-rich element. Mol Cell
Biol. 26:2399–2407. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao W, Liu M, D'Silva NJ and Kirkwood KL:
Tristetraprolin regulates interleukin-6 expression through p38
MAPK-dependent affinity changes with mRNA 3′ untranslated region. J
Interferon Cytokine Res. 31:629–637. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sun L, Stoecklin G, Van Way S,
Hinkovska-Galcheva V, Guo RF, Anderson P and Shanley TP:
Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from
dephosphorylation by protein phosphatase 2a and stabilizes tumor
necrosis factor-alpha mRNA. J Biol Chem. 282:3766–3777. 2007.
View Article : Google Scholar
|
42
|
O'Dea KP, Dokpesi JO, Tatham KC, Wilson MR
and Takata M: Regulation of monocyte subset proinflammatory
responses within the lung microvasculature by the p38 MAPK/MK2
pathway. Am J Physiol Lung Cell Mol Physiol. 301:L812–L821. 2011.
View Article : Google Scholar : PubMed/NCBI
|