1
|
GBD 2013 Mortality and Causes of Death
Collaborators: Global, regional, and national age-sex specific
all-cause and cause-specific mortality for 240 causes of death,
1990–2013: A systematic analysis for the Global Burden of Disease
Study 2013. Lancet. 385:117–171. 2015. View Article : Google Scholar
|
2
|
Fuster V, Stein B, Ambrose JA, Badimon L,
Badimon JJ and Chesebro JH: Atherosclerotic plaque rupture and
thrombosis. Evolving concepts. Circulation. 82(Suppl 3): II47–II59.
1990.PubMed/NCBI
|
3
|
Hellings WE, Peeters W, Moll FL and
Pasterkamp G: From vulnerable plaque to vulnerable patient: The
search for biomarkers of plaque destabilization. Trends Cardiovasc
Med. 17:162–171. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hopkins PN: Molecular biology of
atherosclerosis. Physiol Rev. 93:1317–1542. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shi L, Fisslthaler B, Zippel N, Frömel T,
Hu J, Elgheznawy A, Heide H, Popp R and Fleming I: MicroRNA-223
antagonizes angiogenesis by targeting β1 integrin and preventing
growth factor signaling in endothelial cells. Circ Res.
113:1320–1330. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Haver VG, Slart RH, Zeebregts CJ,
Peppelenbosch MP and Tio RA: Rupture of vulnerable atherosclerotic
plaques: microRNAs conducting the orchestra. Trends Cardiovasc Med.
20:65–71. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Okamura K, Ishizuka A, Siomi H and Siomi
MC: Distinct roles for Argonaute proteins in small RNA-directed RNA
cleavage pathways. Genes Dev. 18:1655–1666. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Feinberg MW and Moore KJ: MicroRNA
Regulation of Atherosclerosis. Circ Res. 118:703–720. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Harris TA, Yamakuchi M, Ferlito M, Mendell
JT and Lowenstein CJ: MicroRNA-126 regulates endothelial expression
of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA.
105:1516–1521. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun X, Icli B, Wara AK, Belkin N, He S,
Kobzik L, Hunninghake GM, Vera MP, Blackwell TS, Baron RM, et al:
MICU Registry: MicroRNA-181b regulates NF-κB-mediated vascular
inflammation. J Clin Invest. 122:1973–1990. 2012.PubMed/NCBI
|
11
|
Sun X, He S, Wara AK, Icli B, Shvartz E,
Tesmenitsky Y, Belkin N, Li D, Blackwell TS, Sukhova GK, et al:
Systemic delivery of microRNA-181b inhibits nuclear factor-κB
activation, vascular inflammation, and atherosclerosis in
apolipoprotein E-deficient mice. Circ Res. 114:32–40. 2014.
View Article : Google Scholar
|
12
|
Cheng HS, Sivachandran N, Lau A, Boudreau
E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI and Fish JE:
MicroRNA-146 represses endothelial activation by inhibiting
pro-inflammatory pathways. EMBO Mol Med. 5:1017–1034. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li S, Ren J, Xu N, Zhang J, Geng Q, Cao C,
Lee C, Song J, Li J and Chen H: MicroRNA-19b functions as potential
anti-thrombotic protector in patients with unstable angina by
targeting tissue factor. J Mol Cell Cardiol. 75:49–57. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Han H, Wang YH, Qu GJ, Sun TT, Li FQ,
Jiang W and Luo SS: Differentiated miRNA expression and validation
of signaling pathways in apoE gene knockout mice by
cross-verification microarray platform. Exp Mol Med. 45:e132013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wegrzyn J, Potla R, Chwae YJ, Sepuri NB,
Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, et
al: Function of mitochondrial Stat3 in cellular respiration.
Science. 323:793–797. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Folkman J: Fundamental concepts of the
angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mehta JL, Mercanti F, Stone A, Wang X,
Ding Z, Romeo F and Khaidakov M: Gene and microRNA transcriptional
signatures of angiotensin II in endothelial cells. J Cardiovasc
Pharmacol. 65:123–129. 2015.
|
18
|
Anderson JL, Adams CD, Antman EM, Bridges
CR, Califf RM, Casey DE Jr, Chavey WE II, Fesmire FM, Hochman JS,
Levin TN, et al: 2011 WRITING GROUP MEMBERS; ACCF/AHA TASK FORCE
MEMBERS: 2011 ACCF/AHA Focused Update Incorporated Into the ACC/AHA
2007 Guidelines for the Management of Patients With Unstable
Angina/Non-ST-Elevation Myocardial Infarction: A report of the
American College of Cardiology Foundation/American Heart
Association Task Force on Practice Guidelines. Circulation. 123.
pp. e426–e579. 2011, View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Li S, Chen H, Ren J, Geng Q, Song J, Lee
C, Cao C, Zhang J and Xu N: MicroRNA-223 inhibits tissue factor
expression in vascular endothelial cells. Atherosclerosis.
237:514–520. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang H, Feng W, Liao W, Ma X, Han Q and
Zhang Y: The gp130/STAT3 signaling pathway mediates beta-adrenergic
receptor-induced atrial natriuretic factor expression in
cardio-myocytes. FEBS J. 275:3590–3597. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu Z, Maiti D, Kisiel W and Duh EJ: Tissue
factor pathway inhibitor-2 is upregulated by vascular endothelial
growth factor and suppresses growth factor-induced proliferation of
endothelial cells. Arterioscler Thromb Vasc Biol. 26:2819–2825.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Boon K, Osorio EC, Greenhut SF, Schaefer
CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De
Souza SJ and Riggins GJ: An anatomy of normal and malignant gene
expression. Proc Natl Acad Sci USA. 99:11287–11292. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar
|
25
|
O'Brien ER, Garvin MR, Dev R, Stewart DK,
Hinohara T, Simpson JB and Schwartz SM: Angiogenesis in human
coronary atherosclerotic plaques. Am J Pathol. 145:883–894.
1994.PubMed/NCBI
|
26
|
Menghini R, Stöhr R and Federici M:
MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev.
17:68–78. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Welten SM, Goossens EA, Quax PH and
Nossent AY: The multifactorial nature of microRNAs in vascular
remodelling. Cardiovasc Res. 110:6–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zeller T, Keller T, Ojeda F, Reichlin T,
Twerenbold R, Tzikas S, Wild PS, Reiter M, Czyz E, Lackner KJ, et
al: Assessment of microRNAs in patients with unstable angina
pectoris. Eur Heart J. 35:2106–2114. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang KJ, Zhao X, Liu YZ, Zeng QT, Mao XB,
Li SN, Zhang M, Jiang C, Zhou Y, Qian C, et al: Circulating
MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising novel
biomarkers for early diagnosis of acute myocardial infarction. Cell
Physiol Biochem. 38:1015–1029. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tang Y, Zhang YC, Chen Y, Xiang Y, Shen CX
and Li YG: The role of miR-19b in the inhibition of endothelial
cell apoptosis and its relationship with coronary artery disease.
Sci Rep. 5:151322015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lv YC, Tang YY, Peng J, Zhao GJ, Yang J,
Yao F, Ouyang XP, He PP, Xie W, Tan YL, et al: MicroRNA-19b
promotes macrophage cholesterol accumulation and aortic
atherosclerosis by targeting ATP-binding cassette transporter A1.
Atherosclerosis. 236:215–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lv YC, Yang J, Yao F, Xie W, Tang YY,
Ouyang XP, He PP, Tan YL, Li L, Zhang M, et al: Diosgenin inhibits
atherosclerosis via suppressing the MiR-19b-induced downregulation
of ATP-binding cassette transporter A1. Atherosclerosis. 240:80–89.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yin R, Bao W, Xing Y, Xi T and Gou S:
MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression
of endothelial cells. Biochem Biophys Res Commun. 417:771–776.
2012. View Article : Google Scholar
|
34
|
Doebele C, Bonauer A, Fischer A, Scholz A,
Reiss Y, Urbich C, Hofmann WK, Zeiher AM and Dimmeler S: Members of
the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic
function in endothelial cells. Blood. 115:4944–4950. 2010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai
LS, Zhang L and Hu Y: miR-15a and miR-16 affect the angiogenesis of
multiple myeloma by targeting VEGF. Carcinogenesis. 34:426–435.
2013. View Article : Google Scholar
|
36
|
Yin R, Wang R, Guo L, Zhang W and Lu Y:
MiR-17-3p inhibits angiogenesis by downregulating flk-1 in the cell
growth signal pathway. J Vasc Res. 50:157–166. 2013. View Article : Google Scholar
|
37
|
He QY, Wang GC, Zhang H, Tong DK, Ding C,
Liu K, Ji F, Zhu X and Yang S: miR-106a-5p suppresses the
proliferation, migration, and invasion of osteosarcoma cells by
targeting HMGA2. DNA Cell Biol. 35:506–520. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pin AL, Houle F, Guillonneau M, Paquet ER,
Simard MJ and Huot J: miR-20a represses endothelial cell migration
by targeting MKK3 and inhibiting p38 MAP kinase activation in
response to VEGF. Angiogenesis. 15:593–608. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Khella HW, Butz H, Ding Q, Rotondo F,
Evans KR, Kupchak P, Dharsee M, Latif A, Pasic MD, Lianidou E, et
al: miR-221/222 are involved in response to sunitinib treatment in
metastatic renal cell carcinoma. Mol Ther. 23:1748–1758. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Bonauer A, Carmona G, Iwasaki M, Mione M,
Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et
al: MicroRNA-92a controls angiogenesis and functional recovery of
ischemic tissues in mice. Science. 324:1710–1713. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu YY, Chen YL, Jao YC, Hsieh IS, Chang KC
and Hong TM: miR-320 regulates tumor angiogenesis driven by
vascular endothelial cells in oral cancer by silencing neuropilin
1. Angiogenesis. 17:247–260. 2014. View Article : Google Scholar
|
42
|
Liu X, Zhang A, Xiang J, Lv Y and Zhang X:
miR-451 acts as a suppressor of angiogenesis in hepatocellular
carcinoma by targeting the IL-6R-STAT3 pathway. Oncol Rep.
36:1385–1392. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jiang Q, Lagos-Quintana M, Liu D, Shi Y,
Helker C, Herzog W and le Noble F: miR-30a regulates endothelial
tip cell formation and arteriolar branching. Hypertension.
62:592–598. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fang L, Du WW, Yang W, Rutnam ZJ, Peng C,
Li H, O'Malley YQ, Askeland RW, Sugg S, Liu M, et al: MiR-93
enhances angiogenesis and metastasis by targeting LATS2. Cell
Cycle. 11:4352–4365. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhu HY, Bai WD, Liu JQ, Zheng Z, Guan H,
Zhou Q, Su LL, Xie ST, Wang YC, Li J, et al: Upregulation of FGFBP1
signaling contributes to miR-146a-induced angiogenesis in human
umbilical vein endothelial cells. Sci Rep. 6:252722016. View Article : Google Scholar
|
47
|
Zhou Q, Gallagher R, Ufret-Vincenty R, Li
X, Olson EN and Wang S: Regulation of angiogenesis and choroidal
neovascularization by members of microRNA-23~27~24 clusters. Proc
Natl Acad Sci USA. 108:8287–8292. 2011. View Article : Google Scholar : PubMed/NCBI
|