1
|
Cristobal R and Oghalai JS: Hearing loss
in children with very low birth weight: Current review of
epidemiology and pathophysiology. Arch Dis Child Fetal Neonatal Ed.
93:F462–F468. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yuan Y, Zhang X, Huang S, Zuo L, Zhang G,
Song Y, Wang G, Wang H, Huang D, Han D, et al: Common molecular
etiologies are rare in nonsyndromic Tibetan Chinese patients with
hearing impairment. PLoS One. 7:e307202012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Koyama S, Kaga K, Sakata H, Iino Y and
Kodera K: Pathological findings in the temporal bone of newborn
infants with neonatal asphyxia. Acta Otolaryngol. 125:1028–1032.
2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hemker SL, Sims-Lucas S and Ho J: Role of
hypoxia during nephrogenesis. Pediatr Nephrol. 31:1571–1577. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Eleftheriades M, Creatsas G and Nicolaides
K: Fetal growth restriction and postnatal development. Ann NY Acad
Sci. 1092:319–330. 2006. View Article : Google Scholar
|
6
|
Nishioka N, Nishina H, Yoshida K,
Kinoshita K and Ehara Y: Effect of hypoxia on the auditory system
of goat fetuses during extrauterine incubation. J Obstet Gynaecol
Res. 29:109–114. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Widziszowska A and Namyslowski G:
Assessment of hearing organ activity in a group of neonates with
central nervous system impairment. Int J Pediatr Otorhinolaryngol.
75:1280–1284. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee MY, Takada T, Takada Y, Kappy MD,
Beyer LA, Swiderski DL, Godin AL, Brewer S, King WM and Raphael Y:
Mice with conditional deletion of Cx26 exhibit no vestibular
phenotype despite secondary loss of Cx30 in the vestibular end
organs. Hear Res. 328:102–112. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Skvorak Giersch AB and Morton CC: Genetic
causes of nonsyndromic hearing loss. Curr Opin Pediatr. 11:551–557.
1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lalwani AK and Castelein CM: Cracking the
auditory genetic code: Nonsyndromic hereditary hearing impairment.
Am J Otol. 20:115–132. 1999.PubMed/NCBI
|
11
|
Locke D, Bian S, Li H and Harris AL:
Post-translational modifications of connexin26 revealed by mass
spectrometry. Biochem J. 424:385–398. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu X, Wang Y, Sun Y, Chen S, Zhang S, Shen
L, Huang X, Lin X and Kong W: Reduced expression of Connexin26 and
its DNA promoter hypermethylation in the inner ear of mimetic aging
rats induced by D-galactose. Biochem Biophys Res Commun.
452:340–346. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen S, Sun Y, Lin X and Kong W: Down
regulated connexin26 at different postnatal stage displayed
different types of cellular degeneration and formation of organ of
Corti. Biochem Biophys Res Commun. 445:71–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiong M, Zhu Y, Lai H, Fu X, Deng W, Yang
C, He Q and Zheng G: Radix astragali inhibits the down-regulation
of connexin 26 in the stria vascularis of the guinea pig cochlea
after acoustic trauma. Eur Arch Otorhinolaryngol. 272:2153–2160.
2015. View Article : Google Scholar
|
15
|
Virmani AK, Muller C, Rathi A,
Zoechbauer-Mueller S, Mathis M and Gazdar AF: Aberrant methylation
during cervical carcinogenesis. Clin Cancer Res. 7:584–589.
2001.PubMed/NCBI
|
16
|
Yano T, Ito F, Kobayashi K, Yonezawa Y,
Suzuki K, Asano R, Hagiwara K, Nakazawa H, Toma H and Yamasaki H:
Hypermethylation of the CpG island of connexin 32, a candiate tumor
suppressor gene in renal cell carcinomas from hemodialysis
patients. Cancer Lett. 208:137–142. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shimizu K, Shimoichi Y, Hinotsume D,
Itsuzaki Y, Fujii H, Honoki K and Tsujiuchi T: Reduced expression
of the Connexin26 gene and its aberrant DNA methylation in rat lung
adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine. Mol
Carcinog. 45:710–714. 2006. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Sirnes S, Lind GE, Bruun J, Fykerud TA,
Mesnil M, Lothe RA, Rivedal E, Kolberg M and Leithe E: Connexins in
colorectal cancer pathogenesis. Int J Cancer. 137:1–11. 2015.
View Article : Google Scholar
|
19
|
Tsujiuchi T, Shimizu K, Itsuzaki Y, Onishi
M, Sugata E, Fujii H and Honoki K: CpG site hypermethylation of
E-cadherin and Connexin26 genes in hepatocellular carcinomas
induced by a choline-deficient L-Amino Acid-defined diet in rats.
Mol Carcinog. 46:269–274. 2007. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Kane AD, Herrera EA, Camm EJ and Giussani
DA: Vitamin C prevents intrauterine programming of in vivo
cardiovascular dysfunction in the rat. Circ J. 77:2604–2611. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen F, Du S, Bian J, You ZB and Wu Y:
Chronic hypoxia exposure during pregnancy is associated with a
decreased active nursing activity in mother and an abnormal birth
weight and postnatal growth in offspring of rats. Horm Behav.
61:504–511. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)). Method Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Shimizu K, Hanaoka M, Kato A, Fujii H,
Honoki K and Tsujiuchi T: Reduced expression of the E-cadherin gene
and its aberrant DNA methylation in hamster pancreatic tumors.
Biochem Biophys Res Commun. 336:49–53. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takai D and Jones PA: Comprehensive
analysis of CpG islands in human chromosomes 21–22. Proc Natl Acad
Sci USA. 99:3740–3745. 2002. View Article : Google Scholar
|
25
|
Giussani DA, Niu Y, Herrera EA, Richter
HG, Camm EJ, Thakor AS, Kane AD, Hansell JA, Brain KL, Skeffington
KL, et al: Heart disease link to fetal hypoxia and oxidative
stress. Adv Exp Med Biol. 814:77–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Iqbal W and Ciriello J: Effect of maternal
chronic intermittent hypoxia during gestation on offspring growth
in the rat. Am J Obstet Gynecol. 209:564.e1–564.e9. 2013.
View Article : Google Scholar
|
27
|
Daniel SJ, McIntosh M, Akinpelu OV and
Rohlicek CV: Hearing outcome of early postnatal exposure to hypoxia
in Sprague-Dawley rats. J Laryngol Otol. 15:1–5. 2014.
|
28
|
Mencher LS and Mencher GT: Neonatal
asphyxia, definitive markers and hearing loss. Audiology.
38:291–295. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sohmer H and Freeman S: Hypoxia induced
hearing loss in animal models of the fetus in-utero. Hear Res.
55:92–97. 1991. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mazurek B, Haupt H, Georgiewa P, Klapp BF
and Reisshauer A: A model of peripherally developing hearing loss
and tinnitus based on the role of hypoxia and ischemia. Med
Hypotheses. 67:892–899. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chang Q, Tang W, Kim Y and Lin X: Timed
conditional null of connexin26 in mice reveals temporary
requirements of connexin26 in key cochlear developmental events
before the onset of hearing. Neurobiol Dis. 73:418–427. 2015.
View Article : Google Scholar
|
32
|
Sun Y, Tang W, Chang Q, Wang Y, Kong W and
Lin X: Connexin30 null and conditional connexin26 null mice display
distinct pattern and time course of cellular degeneration in the
cochlea. J Comp Neurol. 516:569–579. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, Chang Q, Tang W, Sun Y, Zhou B, Li
H and Lin X: Targeted connexin26 ablation arrests postnatal
development of the organ of Corti. Biochem Biophys Res Commun.
385:33–37. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu W, Boström M, Kinnefors A and
Rask-Andersen H: Unique expression of connexins in the human
cochlea. Hear Res. 250:55–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ahmad S, Chen S, Sun J and Lin X:
Connexins 26 and 30 are co-assembled to form gap junctions in the
cochlea of mice. Biochem Biophys Res Commun. 307:362–368. 2003.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P
and Lin X: Gap junction-mediated intercellular biochemical coupling
in cochlear supporting cells is required for normal cochlear
functions. Proc Natl Acad Sci USA. 102:15201–15206. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li
H and Lin X: Virally expressed connexin26 restores gap junction
function in the cochlea of conditional Gjb2 knockout mice. Gene
Ther. 21:71–80. 2014. View Article : Google Scholar
|
38
|
Ahmad S, Tang W, Chang Q, Qu Y, Hibshman
J, Li Y, Söhl G, Willecke K, Chen P and Lin X: Restoration of
connexin26 protein level in the cochlea completely rescues hearing
in a mouse model of human connexin30-linked deafness. Proc Natl
Acad Sci USA. 104:1337–1341. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Inoshita A, Karasawa K, Funakubo M, Miwa
A, Ikeda K and Kamiya K: Dominant negative connexin26 mutation R75W
causing severe hearing loss influences normal programmed cell death
in postnatal organ of Corti. BMC Genet. 15:12014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Loncarek J, Yamasaki H, Levillain P,
Milinkevitch S and Mesnil M: The expression of the tumor suppressor
gene connexin 26 is not mediated by methylation in human esophageal
cancer cells. Mol Carcinog. 36:74–81. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Singal R, Tu ZJ, Vanwert JM, Ginder GD and
Kiang DT: Modulation of the connexin26 tumor suppressor gene
expression through methylation in human mammary epithelial cell
lines. Anticancer Res. 20:59–64. 2000.PubMed/NCBI
|