1
|
Diabetes Atlas IDF. 7th edition.
International Diabetes Federation; 2015
|
2
|
Hales CN, Barker DJ, Clark PM, Cox LJ,
Fall C, Osmond C and Winter PD: Fetal and infant growth and
impaired glucose tolerance at age 64. BMJ. 303:1019–1022. 1991.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hales CN and Barker DJ: Type 2
(non-insulin-dependent) diabetes mellitus: The thrifty phenotype
hypothesis. Diabetologia. 35:595–601. 1992. View Article : Google Scholar : PubMed/NCBI
|
4
|
de Rooij SR, Painter RC, Phillips DI,
Osmond C, Michels RP, Godsland IF, Bossuyt PM, Bleker OP and
Roseboom TJ: Impaired insulin secretion after prenatal exposure to
the Dutch famine. Diabetes Care. 29:1897–1901. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Food and Nutrition Board Recommended
Dietary Allowances. National Research Council, National Academy of
Sciences; Washington DC: 2000
|
6
|
Jeejeebhoy KN, Chu RC, Marliss EB,
Greenberg GR and Bruce-Robertson A: Chromium deficiency, glucose
intolerance, and neuropathy reversed by chromium supplementation,
in a patient receiving long-term total parenteral nutrition. Am J
Clin Nutr. 30:531–538. 1977. View Article : Google Scholar : PubMed/NCBI
|
7
|
Anderson RA: Chromium, glucose intolerance
and diabetes. J Am Coll Nutr. 17:548–555. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Freund H, Atamian S and Fischer JE:
Chromium deficiency during total parenteral nutrition. JAMA.
241:496–498. 1979. View Article : Google Scholar : PubMed/NCBI
|
9
|
Padmavathi IJ, Rao KR and Raghunath M:
Impact of maternal chromium restriction on glucose tolerance,
plasma insulin and oxidative stress in WNIN rat offspring. J Mol
Endocrinol. 47:261–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Waterland RA and Jirtle RL: Early
nutrition, epigenetic changes at transposons and imprinted genes,
and enhanced susceptibility to adult chronic diseases. Nutrition.
20:63–68. 2004. View Article : Google Scholar
|
11
|
Zhang Q, Xiao XH, Zheng J, Li M, Yu M,
Ping F, Wang Z, Qi C, Wang T and Wang X: Maternal chromium
restriction modulates miRNA profiles related to lipid metabolism
disorder in mice offspring. Exp Biol Med (Maywood). 242:1444–1452.
2017. View Article : Google Scholar
|
12
|
Herrera BM, Lockstone HE, Taylor JM, Wills
QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J,
Gauguier D, et al: MicroRNA-125a is over-expressed in insulin
target tissues in a spontaneous rat model of Type 2 Diabetes. BMC
Med Genomics. 2:542009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jordan SD, Krüger M, Willmes DM, Redemann
N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM,
Böttger T, et al: Obesity-induced overexpression of miRNA-143
inhibits insulin-stimulated AKT activation and impairs glucose
metabolism. Nat Cell Biol. 13:434–446. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu
JX, Hu YN, Wu DM, Liu Y, Yan TT, et al: Downregulation of miR-181a
upregulates sirtuin-1 (SIRT1) and improves hepatic insulin
sensitivity. Diabetologia. 55:2032–2043. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ryu HS, Park SY, Ma D, Zhang J and Lee W:
The induction of microRNA targeting IRS-1 is involved in the
development of insulin resistance under conditions of mitochondrial
dysfunction in hepatocytes. PLoS One. 6:e173432011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jeong HJ, Park SY, Yang WM and Lee W: The
induction of miR-96 by mitochondrial dysfunction causes impaired
glycogen synthesis through translational repression of IRS-1 in
SK-Hep1 cells. Biochem Biophys Res Commun. 434:503–508. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Dou L, Zhao T, Wang L, Huang X, Jiao J,
Gao D, Zhang H, Shen T, Man Y, Wang S, et al: miR-200s contribute
to interleukin-6 (IL-6)-induced insulin resistance in hepatocytes.
J Biol Chem. 288:22596–22606. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
National Research Council Committee for
the Update of the Guide for the C and Use of Laboratory A: The
National Academies Collection: Reports funded by National
Institutes of Health Guide for the Care and Use of Laboratory
Animals. 8th (ed). National Academies Press (US) National Academy
of Sciences; Washington (DC): 2011
|
19
|
Yokomizo H, Inoguchi T, Sonoda N, Sakaki
Y, Maeda Y, Inoue T, Hirata E, Takei R, Ikeda N, Fujii M, et al:
Maternal high-fat diet induces insulin resistance and deterioration
of pancreatic β-cell function in adult offspring with sex
differences in mice. Am J Physiol Endocrinol Metab.
306:E1163–E1175. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin
YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al: miRTarBase
2016: Updates to the experimentally validated miRNA-target
interactions database. Nucleic Acids Res. 44:D239–D247. 2016.
View Article : Google Scholar :
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:32003.
View Article : Google Scholar
|
23
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Król E and Krejpcio Z: Chromium(III)
propionate complex supplementation improves carbohydrate metabolism
in insulin-resistance rat model. Food Chem Toxicol. 48:2791–2796.
2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hao C, Hao J, Wang W, Han Z, Li G, Zhang
L, Zhao X and Yu G: Insulin sensitizing effects of
oligomannuronate-chromium (III) complexes in C2C12 skeletal muscle
cells. PLoS One. 6:e245982011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Feng W, Zhao T, Mao G, Wang W, Feng Y, Li
F, Zheng D, Wu H, Jin D, Yang L, et al: Type 2 diabetic rats on
diet supplemented with chromium malate show improved
glycometabolism, glycometabolism-related enzyme levels and lipid
metabolism. PLoS One. 10:e01259522015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Feng W, Mao G, Li Q, Wang W, Chen Y, Zhao
T, Li F, Zou Y, Wu H, Yang L, et al: Effects of chromium malate on
glycometabolism, glycometabolism-related enzyme levels and lipid
metabolism in type 2 diabetic rats: A dose-response and curative
effects study. J Diabetes Investig. 6:396–407. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Racek J, Sindberg CD, Moesgaard S, Mainz
J, Fabry J, Müller L and Rácová K: Effect of chromium-enriched
yeast on fasting plasma glucose, glycated haemoglobin and serum
lipid levels in patients with type 2 diabetes mellitus treated with
insulin. Biol Trace Elem Res. 155:1–4. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Intapad S, Dasinger JH, Brown AD, Fahling
JM, Esters J and Alexander BT: Glucose intolerance develops prior
to increased adiposity and accelerated cessation of estrous
cyclicity in female growth-restricted rats. Pediatr Res.
79:962–970. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Venu L, Kishore YD and Raghunath M:
Maternal and perinatal magnesium restriction predisposes rat pups
to insulin resistance and glucose intolerance. J Nutr.
135:1353–1358. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bringhenti I, Schultz A, Rachid T, Bomfim
MA, Mandarim- de-Lacerda CA and Aguila MB: An early fish
oil-enriched diet reverses biochemical, liver and adipose tissue
alterations in male offspring from maternal protein restriction in
mice. J Nutr Biochem. 22:1009–1014. 2011. View Article : Google Scholar
|
32
|
Takaya J, Yamanouchi S and Kaneko K: A
calcium-deficient diet in rat dams during gestation and nursing
affects hepatic 11β-hydroxysteroid dehydrogenase-1 expression in
the offspring. PLoS One. 9:e841252014. View Article : Google Scholar
|
33
|
Zeng LQ, Wei SB, Sun YM, Qin WY, Cheng J,
Mitchelson K and Xie L: Systematic profiling of mRNA and miRNA
expression in the pancreatic islets of spontaneously diabetic
Goto-Kakizaki rats. Mol Med Rep. 11:67–74. 2015. View Article : Google Scholar
|
34
|
Tang X, Muniappan L, Tang G and Ozcan S:
Identification of glucose-regulated miRNAs from pancreatic {beta}
cells reveals a role for miR-30d in insulin transcription. RNA.
15:287–293. 2009. View Article : Google Scholar :
|
35
|
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ,
Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al: MicroRNA-122
plays a critical role in liver homeostasis and
hepatocarcinogenesis. J Clin Invest. 122:2884–2897. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Fleischhacker SN, Bauersachs S, Wehner A,
Hartmann K and Weber K: Differential expression of circulating
microRNAs in diabetic and healthy lean cats. Vet J. 197:688–693.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou
Y, Huang J, Zhao X, Zhou J, Yan Y, et al: MicroRNA directly
enhances mitochondrial translation during muscle differentiation.
Cell. 158:607–619. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Loeb GB, Khan AA, Canner D, Hiatt JB,
Shendure J, Darnell RB, Leslie CS and Rudensky AY:
Transcriptome-wide miR-155 binding map reveals widespread
noncanonical microRNA targeting. Mol Cell. 48:760–770. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Leung AK, Young AG, Bhutkar A, Zheng GX,
Bosson AD, Nielsen CB and Sharp PA: Genome-wide identification of
Ago2 binding sites from mouse embryonic stem cells with and without
mature microRNAs. Nat Struct Mol Biol. 18:237–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chi SW, Zang JB, Mele A and Darnell RB:
Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature.
460:479–486. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cusi K, Maezono K, Osman A, Pendergrass M,
Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR and Mandarino LJ:
Insulin resistance differentially affects the PI 3-kinase- and MAP
kinase-mediated signaling in human muscle. J Clin Invest.
105:311–320. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Aguirre V, Werner ED, Giraud J, Lee YH,
Shoelson SE and White MF: Phosphorylation of Ser307 in insulin
receptor substrate-1 blocks interactions with the insulin receptor
and inhibits insulin action. J Biol Chem. 277:1531–1537. 2002.
View Article : Google Scholar
|
44
|
Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y,
Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, et al:
Growth hormone and prolactin stimulate tyrosine phosphorylation of
insulin receptor substrate-1, -2, and -3, their association with
p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly
PI3-kinase activation via JAK2 kinase. J Biol Chem.
273:15719–15726. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ye J, Zheng R, Wang Q, Liao L, Ying Y, Lu
H, Cianflone K, Ning Q and Luo X: Downregulating SOCS3 with siRNA
ameliorates insulin signaling and glucose metabolism in hepatocytes
of IUGR rats with catch-up growth. Pediatr Res. 72:550–559. 2012.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Martin-Gronert MS, Fernandez-Twinn DS,
Bushell M, Siddle K and Ozanne SE: Cell-autonomous programming of
rat adipose tissue insulin signalling proteins by maternal
nutrition. Diabetologia. 59:1266–1275. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sohi G, Revesz A and Hardy DB: Nutritional
mismatch in postnatal life of low birth weight rat offspring leads
to increased phosphorylation of hepatic eukaryotic initiation
factor 2α in adulthood. Metabolism. 62:1367–1374. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Berends LM, Fernandez-Twinn DS,
Martin-Gronert MS, Cripps RL and Ozanne SE: Catch-up growth
following intra-uterine growth-restriction programmes an
insulin-resistant phenotype in adipose tissue. Int J Obes.
37:1051–1057. 2013. View Article : Google Scholar
|
49
|
Kamel MA, Helmy MH, Hanafi MY, Mahmoud SA
and Abo Elfetooh H: Impaired peripheral glucose sensing in F1
offspring of diabetic pregnancy. J Physiol Biochem. 70:685–699.
2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Reeves PG: Components of the AIN-93 Diets
as improvements in the AIN-96A diet. J Nutr. 127:838S–841S.
1997.
|