Structural and functional failure of fibrillin‑1 in human diseases (Review)
- Authors:
- Sandra Schrenk
- Carola Cenzi
- Thomas Bertalot
- Maria Teresa Conconi
- Rosa Di Liddo
-
Affiliations: Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy - Published online on: December 22, 2017 https://doi.org/10.3892/ijmm.2017.3343
- Pages: 1213-1223
This article is mentioned in:
Abstract
Biery NJ, Eldadah ZA, Moore CS, Stetten G, Spencer F and Dietz HC: Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 56:70–77. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kainulainen K, Pulkkinen L, Savolainen A, Kaitila I and Peltonen L: Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med. 323:935–939. 1990. View Article : Google Scholar : PubMed/NCBI | |
Robertson I, Jensen S and Handford P: TB domain proteins: Evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J. 433:263–276. 2011. View Article : Google Scholar | |
Corson GM, Chalberg SC, Dietz HC, Charbonneau NL and Sakai LY: Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′end. Genomics. 17:476–484. 1993. View Article : Google Scholar : PubMed/NCBI | |
Maslen CL, Corson GM, Maddox BK, Glanville RW and Sakai LY: Partial sequence of a candidate gene for the Marfan syndrome. Nature. 352:334–337. 1991. View Article : Google Scholar : PubMed/NCBI | |
Handford PA, Mayhew M and Brownlee GG: Calcium binding to fibrillin? Nature. 353:3951991. View Article : Google Scholar : PubMed/NCBI | |
Werner JM, Knott V, Handford PA, Campbell ID and Downing AK: Backbone dynamics of a cbEGF domain pair in the presence of calcium. J Mol Biol. 296:1065–1078. 2000. View Article : Google Scholar : PubMed/NCBI | |
Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID and Handford PA: Solution structure of a pair of calcium-binding epidermal growth factor-like domains: Implications for the Marfan syndrome and other genetic disorders. Cell. 85:597–605. 1996. View Article : Google Scholar : PubMed/NCBI | |
Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA and Downing AK: Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem. 278:12199–12206. 2003. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY and Bächinger HP: Calcium determines the shape of fibrillin. J Biol Chem. 272:7368–7373. 1997. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt DP, Ono RN and Sakai LY: Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem. 272:1231–1236. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J and Reinhardt DP: Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem. 277:50795–50804. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marson A, Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Shuttleworth CA, Baldock C and Kielty CM: Homotypic fibrillin-1 interactions in microfibril assembly. J Biol Chem. 280:5013–5021. 2005. View Article : Google Scholar | |
Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Göhring W, Timpl R and Sakai LY: Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 271:19489–19496. 1996. View Article : Google Scholar : PubMed/NCBI | |
Jensen SA, Reinhardt DP, Gibson MA and Weiss AS: Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem. 276:39661–39666. 2001. View Article : Google Scholar : PubMed/NCBI | |
Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB and Sakai LY: Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 278:2750–2757. 2003. View Article : Google Scholar | |
Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS and Kielty CM: Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem. 279:23748–23758. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ and Handford PA: alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem. 282:6743–6751. 2007. View Article : Google Scholar | |
Jensen SA, Iqbal S, Lowe ED, Redfield C and Handford PA: Structure and interdomain interactions of a hybrid domain: A disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins. Structure. 17:759–768. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lönnqvist L, Reinhardt D, Sakai L and Peltonen L: Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet. 7:2039–2044. 1998. View Article : Google Scholar : PubMed/NCBI | |
Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschödrich-Rotter M, Peters R, Rehemtulla A and Milewicz DM: Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci. 112:1093–1100. 1999.PubMed/NCBI | |
Trask TM, Ritty TM, Broekelmann T, Tisdale C and Mecham RP: N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: A possible first step in microfibril assembly. Biochem J. 340:693–701. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP and Ramirez F: Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol. 124:855–863. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G and Milewicz DM: Profibrillin-1 maturation by human dermal fibroblasts: Proteolytic processing and molecular chaperones. J Cell Biochem. 90:641–652. 2003. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt DP, Keene DR, Corson GM, Pöschl E, Bächinger HP, Gambee JE and Sakai LY: Fibrillin-1: Organization in microfibrils and structural properties. J Mol Biol. 258:104–116. 1996. View Article : Google Scholar : PubMed/NCBI | |
Baldock C, Siegler V, Bax DV, Cain SA, Mellody KT, Marson A, Haston JL, Berry R, Wang MC, Grossmann JG, et al: Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Proc Natl Acad Sci USA. 103:11922–11927. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kuo CL, Isogai Z, Keene DR, Hazeki N, Ono RN, Sengle G, Bächinger HP and Sakai LY: Effects of fibrillin-1 degradation on microfibril ultrastructure. J Biol Chem. 282:4007–4020. 2007. View Article : Google Scholar | |
Qian RQ and Glanville RW: Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry. 36:15841–15847. 1997. View Article : Google Scholar | |
Keene DR, Maddox BK, Kuo HJ, Sakai LY and Glanville RW: Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 39:441–449. 1991. View Article : Google Scholar : PubMed/NCBI | |
Kielty CM and Shuttleworth CA: Fibrillin-containing microfibrils: Structure and function in health and disease. Int J Biochem Cell Biol. 27:747–760. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kewley MA, Williams G and Steven FS: Studies of elastic tissue formation in the developing bovine ligamentum nuchae. J Pathol. 124:95–101. 1978. View Article : Google Scholar : PubMed/NCBI | |
Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, et al: Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem. 281:8016–8023. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID and Downing AK: Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol. 316:113–125. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yadin DA, Robertson IB, McNaught-Davis J, Evans P, Stoddart D, Handford PA, Jensen SA and Redfield C: Structure of the fibrillin-1 N-terminal domains suggests that heparan sulfate regulates the early stages of microfibril assembly. Structure. 21:1743–1756. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF and Reinhardt DP: Fibrillin assembly requires fibronectin. Mol Biol Cell. 20:846–858. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA and Kielty CM: Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci. 121:2696–2704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sabatier L, Djokic J, Fagotto-Kaufmann C, Chen M, Annis DS, Mosher DF and Reinhardt DP: Complex contributions of fibronectin to initiation and maturation of microfibrils. Biochem J. 456:283–295. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CL and Kielty CM: Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci. 127:158–171. 2014. View Article : Google Scholar : | |
Gibson MA, Kumaratilake JS and Cleary EG: The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 264:4590–4598. 1989.PubMed/NCBI | |
Trask BC, Trask TM, Broekelmann T and Mecham RP: The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell. 11:1499–1507. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mecham RP and Gibson MA: The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche. Matrix Biol. 47:13–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fässler R and Chu ML: Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol. 21:7025–7034. 2001. View Article : Google Scholar : PubMed/NCBI | |
Freeman LJ, Lomas A, Hodson N, Sherratt MJ, Mellody KT, Weiss AS, Shuttleworth A and Kielty CM: Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J. 388:1–5. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA and Olson EN: Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 415:168–171. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T and Nakamura T: Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol. 176:1061–1071. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI and Apte SS: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci. 53:461–469. 2012. View Article : Google Scholar : | |
Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY and Sekiguchi K: ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem. 285:4870–4882. 2010. View Article : Google Scholar : | |
Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR and Apte SS: ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem. 286:17156–17167. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hubmacher D and Apte SS: ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol. 47:34–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iozzo RV: Basement membrane proteoglycans: From cellar to ceiling. Nat Rev Mol Cell Biol. 6:646–656. 2005. View Article : Google Scholar : PubMed/NCBI | |
Murdoch AD, Liu B, Schwarting R, Tuan RS and Iozzo RV: Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 42:239–249. 1994. View Article : Google Scholar : PubMed/NCBI | |
Reinboth B, Hanssen E, Cleary EG and Gibson MA: Molecular interactions of biglycan and decorin with elastic fiber components: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 277:3950–3957. 2002. View Article : Google Scholar | |
Raghunath M, Superti-Furga A, Godfrey M and Steinmann B: Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 90:511–515. 1993. View Article : Google Scholar : PubMed/NCBI | |
Superti-Furga A, Raghunath M and Willems PJ: Deficiencies of fibrillin and decorin in fibroblast cultures of a patient with neonatal Marfan syndrome. J Med Genet. 29:875–878. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hayes AJ, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS and Melrose J: Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol. 136:437–454. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tiedemann K, Sasaki T, Gustafsson E, Göhring W, Bätge B, Notbohm H, Timpl R, Wedel T, Schlötzer-Schrehardt U and Reinhardt DP: Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem. 280:11404–11412. 2005. View Article : Google Scholar : PubMed/NCBI | |
Whitelock JM, Melrose J and Iozzo RV: Diverse cell signaling events modulated by perlecan. Biochemistry. 47:11174–11183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y and Arikawa-Hirasawa E: Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res. 12:492–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thisse B and Thisse C: Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287:390–402. 2005. View Article : Google Scholar : PubMed/NCBI | |
Murasawa Y, Watanabe K, Yoneda M, Zako M, Kimata K, Sakai LY and Isogai Z: Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem. 288:29170–29181. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wight TN and Merrilees MJ: Proteoglycans in atherosclerosis and restenosis: Key roles for versican. Circ Res. 94:1158–1167. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu YJ, La Pierre DP, Wu J, Yee AJ and Yang BB: The interaction of versican with its binding partners. Cell Res. 15:483–494. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zheng PS, Vais D, Lapierre D, Liang YY, Lee V, Yang BL and Yang BB: PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation. J Cell Sci. 117:5887–5895. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grässel S, Unsöld C, Schäcke H, Bruckner-Tuderman L and Bruckner P: Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 18:309–317. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hubert T, Grimal S, Ratzinger S, Mechaly I, Grassel S and Fichard-Carroll A: Collagen XVI is a neural component of the developing and regenerating dorsal root ganglia extracellular matrix. Matrix Biol. 26:206–210. 2007. View Article : Google Scholar | |
Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bächinger HP, Sasaki T, Lee-Arteaga S, Zilberberg L, Rifkin DB, Ramirez F, et al: Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem. 284:16872–16881. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ and Kielty CM: Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF-beta binding protein-1. J Biol Chem. 280:18871–18880. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fontana L, Chen Y, Prijatelj P, Sakai T, Fässler R, Sakai LY and Rifkin DB: Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J. 19:1798–1808. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kantola AK, Keski-Oja J and Koli K: Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res. 314:2488–2500. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saharinen J, Hyytiäinen M, Taipale J and Keski-Oja J: Latent transforming growth factor-beta binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev. 10:99–117. 1999. View Article : Google Scholar | |
Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP and Sakai LY: The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem. 280:27970–27980. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bächinger HP and Sakai LY: Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem. 283:13874–13888. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, et al: Microenvironmental regulation by fibrillin-1. PLoS Genet. 8:e10024252012. View Article : Google Scholar : PubMed/NCBI | |
Wohl AP, Troilo H, Collins RF, Baldock C and Sengle G: Extracellular regulation of bone morphogenetic protein activity by the microfibril component fibrillin-1. J Biol Chem. 291:12732–12746. 2016. View Article : Google Scholar : PubMed/NCBI | |
Charbonneau NL, Ono RN, Corson GM, Keene DR and Sakai LY: Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res Part C Embryo Today. 72:37–50. 2004. View Article : Google Scholar | |
Massagué J and Chen YG: Controlling TGF-beta signaling. Genes Dev. 14:627–644. 2000.PubMed/NCBI | |
Lawrence DA, Pircher R, Krycève-Martinerie C and Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol. 121:184–188. 1984. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zeyer KA and Reinhardt DP: Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal. 9:309–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dubois CM, Laprise MH, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 270:10618–10624. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nunes I, Munger J, Harpel JG, Nagano Y, Shapiro R, Gleizes PE and Rifkin DB: Structure and activation of the large latent transforming growth factor-Beta complex. J Am Optom Assoc. 69:643–648. 1998.PubMed/NCBI | |
Annes JP, Munger JS and Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci. 116:217–224. 2003. View Article : Google Scholar | |
Hinz B: It has to be the αv: Myofibroblast integrins activate latent TGF-β1. Nat Med. 19:1567–1568. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sato Y and Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 109:309–315. 1989. View Article : Google Scholar : PubMed/NCBI | |
Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI | |
Jenkins G: The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol. 40:1068–1078. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lyons RM, Gentry LE, Purchio AF and Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 110:1361–1367. 1990. View Article : Google Scholar : PubMed/NCBI | |
Schultz-Cherry S and Murphy-Ullrich JE: Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol. 122:923–932. 1993. View Article : Google Scholar : PubMed/NCBI | |
Barcellos-Hoff MH, Derynck R, Tsang ML and Weatherbee JA: Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 93:892–899. 1994. View Article : Google Scholar : PubMed/NCBI | |
Schmierer B and Hill CS: TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Xu L: Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci. 1:402011. View Article : Google Scholar : PubMed/NCBI | |
Tang LY and Zhang YE: Non-degradative ubiquitination in Smad-dependent TGF-β signaling. Cell Biosci. 1:432011. View Article : Google Scholar | |
Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI | |
Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI | |
Verrecchia F, Chu ML and Mauviel A: Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 276:17058–17062. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sengle G, Ono RN, Sasaki T and Sakai LY: Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: Biglycan forms a ternary complex with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem. 286:5087–5099. 2011. View Article : Google Scholar | |
Pereira L, D'Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T and Bonadio J: Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 2:17621993. View Article : Google Scholar : PubMed/NCBI | |
Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ and Kielty CM: Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem. 278:34605–34616. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marek I, Volkert G, Hilgers KF, Bieritz B, Rascher W, Reinhardt DP and Hartner A: Fibrillin-1 and alpha8 integrin are co-expressed in the glomerulus and interact to convey adhesion of mesangial cells. Cell Adh Migr. 8:389–395. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SS, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI and Handford PA: Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure. 12:717–729. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bouzeghrane F, Reinhardt DP, Reudelhuber TL and Thibault G: Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol. 289:H982–H991. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR and Kielty CM: Cell adhesion to fibrillin-1: Identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 120:1383–1392. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tiedemann K, Bätge B, Müller PK and Reinhardt DP: Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem. 276:36035–36042. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR and Kielty CM: Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem. 283:27017–27027. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alexopoulou AN, Multhaupt HA and Couchman JR: Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 39:505–528. 2007. View Article : Google Scholar | |
Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, et al: Mutations in fibrillin-1 cause congenital scleroderma: Stiff skin syndrome. Sci Transl Med. 2:23ra202010. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, et al: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 6:499–506. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cook JR, Carta L, Bénard L, Chemaly ER, Chiu E, Rao SK, Hampton TG, Yurchenco P; GenTAC Registry Consortium; Costa KD, et al: Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest. 124:1329–1339. 2014.PubMed/NCBI | |
Weber E, Rossi A, Solito R, Sacchi G, Agliano' M and Gerli R: Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res. 64:47–55. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dietz HC, Cutting CR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, et al: Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 352:337–339. 1991. View Article : Google Scholar : PubMed/NCBI | |
Collod-Béroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, et al: Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat. 22:199–208. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ramirez F and Dietz HC: Marfan syndrome: From molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 17:252–258. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakai LY, Keene DR, Renard M and De Backer J: FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 591:279–291. 2016. View Article : Google Scholar : PubMed/NCBI | |
Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M, et al: Effect of mutation type and location on clinical outcome in 1,013 probands with marfan syndrome or related phenotypes and fbn1 mutations: An international study. Am J Hum Genet. 81:454–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
Booms P, Cisler J, Mathews KR, Godfrey M, Tiecke F, Kaufmann UC, Vetter U, Hagemeier C and Robinson PN: Novel exon skipping mutation in the fibrillin-1 gene: Two 'hot spots' for the neonatal Marfan syndrome. Clin Genet. 55:110–117. 1999. View Article : Google Scholar : PubMed/NCBI | |
Morse RP, Rockenmacher S, Pyeritz RE, Sanders SP, Bieber FR, Lin A, MacLeod P, Hall B and Graham JM Jr: Diagnosis and management of infantile marfan syndrome. Pediatrics. 86:888–895. 1990.PubMed/NCBI | |
Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hofstee Y, Jondeau G, Faivre L, Milewicz DM, et al: The revised Ghent nosology for the Marfan syndrome. J Med Genet. 47:476–485. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dietz HC and Pyeritz RE: Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 4(Spec No): 1799–1809. 1995. View Article : Google Scholar : PubMed/NCBI | |
Francke U, Berg MA, Tynan K, Brenn T, Liu W, Aoyama T, Gasner C, Miller DC and Furthmayr H: A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet. 56:1287–1296. 1995.PubMed/NCBI | |
Yamawaki T, Nagaoka K, Morishige K, Sadamatsu K, Tashiro H, Yasunaga H, Morisaki H and Morisaki T: Familial thoracic aortic aneurysm and dissection associated with Marfan-related gene mutations: Case report of a family with two gene mutations. Intern Med. 48:555–558. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sood S, Eldadah ZA, Krause WL, McIntosh I and Dietz HC: Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet. 12:209–211. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kainulainen K, Karttunen L, Puhakka L, Sakai L and Peltonen L: Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet. 6:64–69. 1994. View Article : Google Scholar : PubMed/NCBI | |
Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, et al: Mutations in the TGFβ Binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 89:7–14. 2011. View Article : Google Scholar : PubMed/NCBI | |
Faivre L, Dollfus H, Lyonnet S, Alembik Y, Mégarbané A, Samples J, Gorlin RJ, Alswaid A, Feingold J, Le Merrer M, et al: Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome. Am J Med Genet A. 123A:204–207. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cecchi A, Ogawa N, Martinez HR, Carlson A, Fan Y, Penny DJ, Guo DC, Eisenberg S, Safi H, Estrera A, et al: Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am J Med Genet Part A. 161A:2305–2310. 2013. View Article : Google Scholar : PubMed/NCBI | |
Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A and Cormier-Daire V: In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 40:34–36. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Mégarbané A, Alswaid A, Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L and Cormier-Daire V: ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am J Hum Genet. 75:801–806. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL and Dietz HC: Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature. 503:126–130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hollister DW, Godfrey M, Sakai LY and Pyeritz RE: Immunohistologic abnormalities of the Microfibrillar-fiber system in the marfan syndrome. N Engl J Med. 323:152–159. 1990. View Article : Google Scholar : PubMed/NCBI | |
Eldadah ZA, Brenn T, Furthmayr H and Dietz HC: Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest. 95:874–880. 1995. View Article : Google Scholar : PubMed/NCBI | |
Godfrey M, Raghunath M, Cisler J, Bevins CL, DePaepe A, Di Rocco M, Gregoritch J, Imaizumi K, Kaplan P, Kuroki Y, et al: Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome. Am J Pathol. 146:1414–1421. 1995.PubMed/NCBI | |
Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR and Sakai LY: In vivo studies of mutant Fibrillin-1 microfibrils. J Biol Chem. 285:24943–24955. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aoyama T, Tynan K, Dietz HC, Francke U and Furthmayr H: Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome. Hum Mol Genet. 2:2135–2140. 1993. View Article : Google Scholar : PubMed/NCBI | |
Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY and Dietz HC: Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest. 114:172–181. 2004. View Article : Google Scholar : PubMed/NCBI | |
Arbustini E, Grasso M, Ansaldi S, Malattia C, Pilotto A, Porcu E, Disabella E, Marziliano N, Pisani A, Lanzarini L, et al: Identification of sixty-two novel and twelve known FBN1 mutations in eighty-one unrelated probands with Marfan syndrome and other fibrillinopathies. Hum Mutat. 26:4942005. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt DP, Ono RN, Notbohm H, Müller PK, Bächinger HP and Sakai LY: Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. J Biol Chem. 275:12339–12345. 2000. View Article : Google Scholar : PubMed/NCBI | |
Booms P, Tiecke F, Rosenberg T, Hagemeier C and Robinson PN: Differential effect of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments. Hum Genet. 107:216–224. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hindson VJ, Ashworth JL, Rock MJ, Cunliffe S, Shuttleworth CA and Kielty CM: Fibrillin degradation by matrix metalloproteinases: Identification of amino- and carboxy-terminal cleavage sites. FEBS Lett. 452:195–198. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH III, Spinale FG and Gorman RC: Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation. 114(Suppl 1): I365–I370. 2006. View Article : Google Scholar : PubMed/NCBI | |
Segura AM, Luna RE, Horiba K, Stetler-Stevenson WG, McAllister HA Jr, Willerson JT and Ferrans VJ: Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan's syndrome. Circulation. 98(Suppl 19): II331–II338. 1998.PubMed/NCBI | |
Fleischer KJ, Nousari HC, Anhalt GJ, Stone CD and Laschinger JC: Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome. Ann Thorac Surg. 63:1012–1017. 1997. View Article : Google Scholar : PubMed/NCBI | |
Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P and Sinha S: An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet. 49:97–109. 2017. View Article : Google Scholar | |
Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY and Dietz HC: Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 33:407–411. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP and Dietz HC: TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 114:1586–1592. 2004. View Article : Google Scholar : PubMed/NCBI | |
Franken R, den Hartog AW, de Waard V, Engele L, Radonic T, Lutter R, Timmermans J, Scholte AJ, van den Berg MP, Zwinderman AH, et al: Circulating transforming growth factor-β as a prognostic biomarker in Marfan syndrome. Int J Cardiol. 168:2441–2446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pattanaik D, Brown M and Postlethwaite AE: Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res. 4:105–125. 2011.PubMed/NCBI | |
Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM and Jimenez SA: A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 6:300–313. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lemaire R, Bayle J and Lafyatis R: Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis. Curr Opin Rheumatol. 18:582–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gayraud B, Keene DR, Sakai LY and Ramirez F: New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol. 150:667–680. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA and Jimenez SA: The tight skin mouse: Demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 140:1159–1166. 1998. View Article : Google Scholar : PubMed/NCBI | |
Saito S, Nishimura H, Brumeanu TD, Casares S, Stan AC, Honjo T and Bona CA: Characterization of mutated protein encoded by partially duplicated fibrillin-1 gene in tight skin (TSK) mice. Mol Immunol. 36:169–176. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gardi C, Martorana PA, de Santi MM, van Even P and Lungarella G: A biochemical and morphological investigation of the early development of genetic emphysema in tight-skin mice. Exp Mol Pathol. 50:398–410. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP, et al: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol. 163:1066–1072. 1999.PubMed/NCBI | |
Siracusa LD, McGrath R, Fisher JK and Jimenez SA: The mouse tight skin (Tsk) phenotype is not dependent on the presence of mature T and B lymphocytes. Mamm Genome. 9:907–909. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dodig TD, Mack KT, Cassarino DF and Clark SH: Development of the tight-skin phenotype in immune-deficient mice. Arthritis Rheum. 44:723–727. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kissin EY, Lemaire R, Korn JH and Lafyatis R: Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum. 46:3000–3009. 2002. View Article : Google Scholar : PubMed/NCBI | |
Podolsky DK: Inflammatory bowel disease. N Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shimshoni E, Yablecovitch D, Baram L, Dotan I and Sagi I: ECM remodelling in IBD: Innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut. 64:367–372. 2015. View Article : Google Scholar : | |
Stumpf M, Cao W, Klinge U, Klosterhalfen B, Junge K, Krones CJ and Schumpelick V: Reduced expression of collagen type I and increased expression of matrix metalloproteinases 1 in patients with Crohn's disease. J Invest Surg. 18:33–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stumpf M, Cao W, Klinge U, Klosterhalfen B, Kasperk R and Schumpelick V: Increased distribution of collagen type III and reduced expression of matrix metalloproteinase 1 in patients with diverticular disease. Int J Colorectal Dis. 16:271–275. 2001. View Article : Google Scholar : PubMed/NCBI | |
Stallmach A, Schuppan D, Riese HH, Matthes H and Riecken EO: Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn's disease. Gastroenterology. 102:1920–1929. 1992. View Article : Google Scholar : PubMed/NCBI | |
Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S and Gay R: Collagen content and types in the intestinal strictures of Crohn's disease. Gastroenterology. 94:257–265. 1988. View Article : Google Scholar : PubMed/NCBI | |
Ratzinger S, Eble JA, Pasoldt A, Opolka A, Rogler G, Grifka J and Grässel S: Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biol. 29:177–193. 2010. View Article : Google Scholar | |
Koutroubakis IE, Petinaki E, Dimoulios P, Vardas E, Roussomoustakaki M, Maniatis AN and Kouroumalis EA: Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. 56:817–820. 2003. View Article : Google Scholar : PubMed/NCBI | |
Spenlé C, Lefebvre O, Lacroute J, Méchine-Neuville A, Barreau F, Blottière HM, Duclos B, Arnold C, Hussenet T, Hemmerlé J, et al: The laminin response in inflammatory bowel disease: Protection or malignancy? PLoS One. 9:e1113362014. View Article : Google Scholar : PubMed/NCBI | |
de la Motte CA: Hyaluronan in intestinal homeostasis and inflammation: Implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 301:G945–G949. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sallam H, McNearney TA and Chen JD: Systematic review: Pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther. 23:691–712. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sjogren RW: Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 37:1265–1282. 1994. View Article : Google Scholar : PubMed/NCBI | |
Marie I, Ducrotté P, Denis P, Hellot MF and Levesque H: Outcome of small-bowel motor impairment in systemic sclerosis-a prospective manometric 5-yr follow-up. Rheumatology (Oxford). 46:150–153. 2007. View Article : Google Scholar | |
Greydanus MP and Camilleri M: Abnormal postcibal antral and small bowel motility due to neuropathy or myopathy in systemic sclerosis. Gastroenterology. 96:110–115. 1989. View Article : Google Scholar : PubMed/NCBI | |
Iovino P, Valentini G, Ciacci C, De Luca A, Tremolaterra F, Sabbatini F, Tirri E and Mazzacca G: Proximal stomach function in systemic sclerosis: Relationship with autonomic nerve function. Dig Dis Sci. 46:723–730. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ibba-Manneschi L, Del Rosso A, Pacini S, Tani A, Bechi P and Matucci Cerinic M: Ultrastructural study of the muscle coat of the gastric wall in a case of systemic sclerosis. Ann Rheum Dis. 61:754–756. 2002. View Article : Google Scholar : PubMed/NCBI | |
Manetti M, Neumann E, Milia AF, Tarner IH, Bechi P, Matucci-Cerinic M, Ibba-Manneschi L and Müller-Ladner U: Severe fibrosis and increased expression of fibrogenic cytokines in the gastric wall of systemic sclerosis patients. Arthritis Rheum. 56:3442–3447. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pedersen J, Gao C, Egekvist H, Bjerring P, Arendt-Nielsen L, Gregersen H and Drewes AM: Pain and biomechanical responses to distention of the duodenum in patients with systemic sclerosis. Gastroenterology. 124:1230–1239. 2003. View Article : Google Scholar : PubMed/NCBI | |
Latella G, Di Gregorio J, Flati V, Rieder F and Lawrance IC: Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 50:53–65. 2015. View Article : Google Scholar | |
LeRoy EC, Trojanowska MI and Smith EA: Cytokines and human fibrosis. Eur Cytokine Netw. 1:215–219. 1990.PubMed/NCBI | |
Babyatsky MW, Rossiter G and Podolsky DK: Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 110:975–984. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni AB and Karlsson S: Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol. 143:3–9. 1993.PubMed/NCBI | |
Gorelik L and Flavell RA: Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2:46–53. 2002. View Article : Google Scholar : PubMed/NCBI | |
Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van Duijn W, van Hogezand RA, Sier CF, Hommes DW, Lamers CB and Verspaget HW: Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis. 39:733–739. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lakatos G, Hritz I, Varga MZ, Juhász M, Miheller P, Cierny G, Tulassay Z and Herszényi L: The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 30:289–295. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rath T, Roderfeld M, Graf J, Wagner S, Vehr AK, Dietrich C, Geier A and Roeb E: Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: A precancerous potential? Inflamm Bowel Dis. 12:1025–1035. 2006. View Article : Google Scholar : PubMed/NCBI | |
Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S and Robinson PN: RGD-containing fibrillin-1 fragments upregulate matrix metallopro-teinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome. Hum Genet. 116:51–61. 2005. View Article : Google Scholar | |
Booms P, Ney A, Barthel F, Moroy G, Counsell D, Gille C, Guo G, Pregla R, Mundlos S, Alix AJ and Robinson PN: A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metallopro-teinase-1: Biochemical and computational analysis. J Mol Cell Cardiol. 40:234–246. 2006. View Article : Google Scholar : PubMed/NCBI |