Mutual regulation of the Hippo/Wnt/LPA/TGF‑β signaling pathways and their roles in glaucoma (Review)
- Authors:
- Xin Wang
- Guoli Huai
- Hailian Wang
- Yuande Liu
- Ping Qi
- Wei Shi
- Jie Peng
- Hongji Yang
- Shaoping Deng
- Yi Wang
-
Affiliations: Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China, Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China, 91388 Military Hospital, Zhanjiang, Guangdong 524022, P.R. China, Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China - Published online on: December 29, 2017 https://doi.org/10.3892/ijmm.2017.3352
- Pages: 1201-1212
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Quigley HA: Open-angle glaucoma. N Engl J Med. 328:1097–1106. 1993. View Article : Google Scholar : PubMed/NCBI | |
Johnson M: ‘What controls aqueous humour outflow resistance?’. Exp Eye Res. 82:545–557. 2006. View Article : Google Scholar : PubMed/NCBI | |
Johnstone MA and Grant WG: Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 75:365–383. 1973. View Article : Google Scholar : PubMed/NCBI | |
Knepper PA, Goossens W, Hvizd M and Palmberg PF: Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 37:1360–1367. 1996. | |
Mao W, Millar JC, Wang WH, Silverman SM, Liu Y, Wordinger RJ, Rubin JS, Pang IH and Clark AF: Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 53:7043–7051. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM, Liu J, Peters EC and Wu X: Identification of serum-derived sphin-gosine-1-phosphate as a small molecule regulator of YAP. Chem Biol. 19:955–962. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH and Clark AF: TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci. 47:226–234. 2006. View Article : Google Scholar | |
Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, et al: The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 18:579–591. 2010. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kango-Singh M and Singh A: Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn. 238:1627–1637. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saucedo LJ and Edgar BA: Filling out the Hippo pathway. Nat Rev Mol Cell Biol. 8:613–621. 2007. View Article : Google Scholar : PubMed/NCBI | |
Buttitta LA and Edgar BA: How size is controlled: from Hippos to Yorkies. Nat Cell Biol. 9:1225–1227. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pan D: Hippo signaling in organ size control. Genes Dev. 21:886–897. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Lei QY and Guan KL: The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol. 20:638–646. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu FX and Guan KL: The Hippo pathway: regulators and regulations. Genes Dev. 27:355–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Justice RW, Zilian O, Woods DF, Noll M and Bryant PJ: The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9:534–546. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D and Hariharan IK: Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 110:467–478. 2002. View Article : Google Scholar : PubMed/NCBI | |
Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G: Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 5:914–920. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL and Li Y: Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 120:675–685. 2005. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wu S, Barrera J, Matthews K and Pan D: The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell. 122:421–434. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J and Zider A: SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol. 18:435–441. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hilman D and Gat U: The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol. 28:2403–2417. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L and Guan KL: Hippo signaling at a glance. J Cell Sci. 123:4001–4006. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rauskolb C, Pan G, Reddy BV, Oh H and Irvine KD: Zyxin links fat signaling to the hippo pathway. PLoS Biol. 9:e10006242011. View Article : Google Scholar : PubMed/NCBI | |
Bryant PJ, Huettner B, Held LI Jr, Ryerse J and Szidonya J: Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev Biol. 129:541–554. 1988. View Article : Google Scholar : PubMed/NCBI | |
Poernbacher I, Baumgartner R, Marada SK, Edwards K and Stocker H: Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr Biol. 22:389–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H and Halder G: The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 8:27–36. 2006. View Article : Google Scholar | |
Zhao B, Tumaneng K and Guan KL: The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 13:877–883. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Zheng Y, Dong J, Klusza S, Deng WM and Pan D: Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 18:288–299. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Robinson BS, Huang J, Hong Y and Moberg KH: Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol. 20:582–590. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–7. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun S and Irvine KD: Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol. 26:694–704. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tyler DM and Baker NE: Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol. 305:187–201. 2007. View Article : Google Scholar : PubMed/NCBI | |
Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, Zhang X and Halder G: The fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr Biol. 16:2090–2100. 2006. View Article : Google Scholar : PubMed/NCBI | |
McCartney BM, Kulikauskas RM, LaJeunesse DR and Fehon RG: The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development. 127:1315–1324. 2000.PubMed/NCBI | |
Baumgartner R, Poernbacher I, Buser N, Hafen E and Stocker H: The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 18:309–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tikoo A, Varga M, Ramesh V, Gusella J and Maruta H: An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem. 269:23387–23390. 1994.PubMed/NCBI | |
Yi C and Kissil JL: Merlin in organ size control and tumorigenesis: Hippo versus EGFR? Genes Dev. 24:1673–1679. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C and Halder G: The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA. 107:15810–15815. 2010. View Article : Google Scholar : PubMed/NCBI | |
Edgar BA: From cell structure to transcription: Hippo forges a new path. Cell. 124:267–273. 2006. View Article : Google Scholar : PubMed/NCBI | |
Avruch J, Zhou D, Fitamant J and Bardeesy N: Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer. 104:24–32. 2011. View Article : Google Scholar : | |
Wu S, Huang J, Dong J and Pan D: Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA and Silljé HH: The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 24:2076–2086. 2005. View Article : Google Scholar : PubMed/NCBI | |
Callus BA, Verhagen AM and Vaux DL: Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 273:4264–4276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Pei J, Xia H, Ke H, Wang H and Tao W: Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene. 22:4398–4405. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T and Tao W: LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene. 21:1233–1241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li DM, Chen W and Xu T: Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G(2)/M arrest or apoptosis. Oncogene. 20:6516–6523. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pan D: The Hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L, Lei Q and Guan KL: The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes De. 24:862–874. 2010. View Article : Google Scholar | |
Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB, Bowtell DD and Harvey KF; AOC S Study group: The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 30:2810–2822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sudol M: Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 9:2145–2152. 1994.PubMed/NCBI | |
Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, et al: Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 125:1253–1267. 2006. View Article : Google Scholar : PubMed/NCBI | |
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W and Song H: Structural basis of YAP recognition by TEAD4 in the Hippo pathway. Genes Dev. 24:290–300. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oh H and Irvine KD: In vivo regulation of Yorkie phosphorylation and localization. Development. 135:1081–1088. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oh H and Irvine KD: Yorkie: the final destination of Hippo signaling. Trends Cell Biol. 20:410–417. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, et al: TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ and Cantley LC: The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 91:961–971. 1997. View Article : Google Scholar | |
Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y and Guan KL: TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol. 28:2426–2436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Basu S, Totty NF, Irwin MS, Sudol M and Downward J: Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 11:11–23. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Li L, Tumaneng K, Wang CY and Guan KL: A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24:72–85. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, et al: The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 285:37159–37169. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R and Brummelkamp TR: YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 17:2054–2060. 2007. View Article : Google Scholar : PubMed/NCBI | |
Da CL, Xin Y, Zhao J and Luo XD: Significance and relationship between Yes-associated protein and survivin expression in gastric carcinoma and precancerous lesions. World J Gastroenterol. 15:4055–4061. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Su L and Ou Q: Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur J Cancer. 48:1227–1234. 2012. View Article : Google Scholar | |
Lam-Himlin DM, Daniels JA, Gayyed MF, Dong J, Maitra A, Pan D, Montgomery EA and Anders RA: The Hippo pathway in human upper gastrointestinal dysplasia and carcinoma: a novel oncogenic pathway. Int J Gastrointest Cancer. 37:103–109. 2006. | |
Wada K, Itoga K, Okano T, Yonemura S and Sasaki H: Hippo pathway regulation by cell morphology and stress fibers. Development. 138:3907–3914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Straßburger K, Tiebe M, Pinna F, Breuhahn K and Teleman AA: Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol. 367:187–196. 2012. View Article : Google Scholar | |
Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al: Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 150:780–791. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan R, Kim NG and Gumbiner BM: Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci USA. 110:2569–2574. 2013. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi A, Yamamoto H and Sato A: Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 19:119–129. 2009. View Article : Google Scholar : PubMed/NCBI | |
He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R: Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ouyang H, Zhuo Y and Zhang K: WNT signaling in stem cell differentiation and tumor formation. J Clin Invest. 123:1422–1424. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Clements WK, Kimelman D and Xu W: Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 17:2753–2764. 2003. View Article : Google Scholar : PubMed/NCBI | |
Habas R and Dawid IB: Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 4:22005. View Article : Google Scholar : PubMed/NCBI | |
Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S and Wieschaus E: Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell. 4:407–418. 2003. View Article : Google Scholar : PubMed/NCBI | |
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, et al: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 24:245–250. 2000. View Article : Google Scholar : PubMed/NCBI | |
Giles RH, van Es JH and Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 1653:1–24. 2003.PubMed/NCBI | |
Cong F, Schweizer L and Varmus H: Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 131:5103–5115. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cliffe A, Hamada F and Bienz M: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol. 13:960–966. 2003. View Article : Google Scholar : PubMed/NCBI | |
Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A and Lee E: The way Wnt works: components and mechanism. Growth Factors. 31:1–31. 2013. View Article : Google Scholar : | |
Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP and Li L: Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol. 180:1087–1100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Itoh K, Brott BK, Bae GU, Ratcliffe MJ and Sokol SY: Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol. 4:32005. View Article : Google Scholar : PubMed/NCBI | |
Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M and Piccolo S: Role of TAZ as mediator of Wnt signaling. Cell. 151:1443–1456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL and Martin JF: Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 332:458–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Willert K, Shibamoto S and Nusse R: Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev. 13:1768–1773. 1999. View Article : Google Scholar : PubMed/NCBI | |
Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, et al: Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 149:1245–1256. 2012. View Article : Google Scholar : PubMed/NCBI | |
Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G and Yochum GS: Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem. 287:11730–11739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al: YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang WH, McNatt LG, Pang IH, Millar JC, Hellberg PE, Hellberg MH, Steely HT, Rubin JS, Fingert JH, Sheffield VC, et al: Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 118:1056–1064. 2008.PubMed/NCBI | |
Morgan JT, Raghunathan VK, Chang YR, Murphy CJ and Russell P: Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells. Exp Eye Res. 132:174–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kwon HS, Lee HS, Ji Y, Rubin JS and Tomarev SI: Myocilin is a modulator of Wnt signaling. Mol Cell Biol. 29:2139–2154. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tovar-Vidales T, Roque R, Clark AF and Wordinger RJ: Tissue transglutaminase expression and activity in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 49:622–628. 2008. View Article : Google Scholar : PubMed/NCBI | |
Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, et al: LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 50:157–186. 2010. View Article : Google Scholar : PubMed/NCBI | |
van Corven EJ, Groenink A, Jalink K, Eichholtz T and Moolenaar WH: Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 59:45–54. 1989. View Article : Google Scholar : PubMed/NCBI | |
Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y and Nagawa H: Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res. 63:1706–1711. 2003.PubMed/NCBI | |
Liu S, Umezu-Goto M, Murph M, Lu Y, Liu W, Zhang F, Yu S, Stephens LC, Cui X, Murrow G, et al: Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 15:539–550. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rohen JW: Why is intraocular pressure elevated in chronic simple glaucoma? Anatomical considerations. Ophthalmology. 90:758–765. 1983. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 130:429–440. 2000. View Article : Google Scholar | |
Gasiorowski JZ and Russell P: Biological properties of trabecular meshwork cells. Exp Eye Res. 88:671–675. 2009. View Article : Google Scholar | |
Iyer P, Lalane R III, Morris C, Challa P, Vann R and Rao PV: Autotaxin-lysophosphatidic acid axis is a novel molecular target for lowering intraocular pressure. PLoS One. 7:e426272012. View Article : Google Scholar : PubMed/NCBI | |
Li AF, Tane N and Roy S: Fibronectin overexpression inhibits trabecular meshwork cell monolayer permeability. Mol Vis. 10:750–757. 2004.PubMed/NCBI | |
Willier S, Butt E and Grunewald TG: Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 105:317–333. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Larco JE and Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA. 75:4001–4005. 1978. View Article : Google Scholar : PubMed/NCBI | |
Todaro GJ and De Larco JE: Growth factors produced by sarcoma virus-transformed cells. Cancer Res. 38:4147–4154. 1978.PubMed/NCBI | |
Roberts AB, Lamb LC, Newton DL, Sporn MB, De Larco JE and Todaro GJ: Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci USA. 77:3494–3498. 1980. View Article : Google Scholar : PubMed/NCBI | |
Pena RA, Jerdan JA and Glaser BM: Effects of TGF-beta and TGF-beta neutralizing antibodies on fibroblast-induced collagen gel contraction: implications for proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 35:2804–2808. 1994.PubMed/NCBI | |
Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Yu, Pierschbacher MD and Ruoslahti E: Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 360:361–364. 1992. View Article : Google Scholar : PubMed/NCBI | |
Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis. 17:1745–1758. 2011. | |
Itoh S, Itoh F, Goumans MJ and Ten Dijke P: Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem. 267:6954–6967. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dupont J, McNeilly J, Vaiman A, Canepa S, Combarnous Y and Taragnat C: Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells. Biol Reprod. 68:1877–1887. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen HB, Shen J, Ip YT and Xu L: Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev. 20:648–653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eisenstein R and Grant-Bertacchini D: Growth inhibitory activities in avascular tissues are recognized by anti-transforming growth factor beta antibodies. Curr Eye Res. 10:157–162. 1991. View Article : Google Scholar : PubMed/NCBI | |
Tripathi RC, Li J, Chan WF and Tripathi BJ: Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 59:723–727. 1994. View Article : Google Scholar : PubMed/NCBI | |
Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N and Honda Y: Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 239:109–113. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pervan CL, Lautz JD, Blitzer AL, Langert KA and Stubbs EB Jr: Rho GTPase signaling promotes constitutive expression and release of TGF-β2 by human trabecular meshwork cells. Exp Eye Res. 146:95–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rao PV, Deng PF, Kumar J and Epstein DL: Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 42:1029–1037. 2001.PubMed/NCBI | |
Inoue T and Tanihara H: Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res. 37:1–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takai Y, Tanito M and Ohira A: Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci. 53:241–247. 2012. View Article : Google Scholar | |
Li J, Tripathi BJ and Tripathi RC: Modulation of pre-mRNA splicing and protein production of fibronectin by TGF-beta2 in porcine trabecular cells. Invest Ophthalmol Vis Sci. 41:3437–3443. 2000.PubMed/NCBI | |
Wordinger RJ, Clark AF, Agarwal R, Lambert W, McNatt L, Wilson SE, Qu Z and Fung BK: Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci. 39:1575–1589. 1998.PubMed/NCBI | |
Tamm ER, Siegner A, Baur A and Lütjen-Drecoll E: Transforming growth factor-beta 1 induces alpha-smooth muscle-actin expression in cultured human and monkey trabecular meshwork. Exp Eye Res. 62:389–397. 1996. View Article : Google Scholar : PubMed/NCBI | |
Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI | |
Quigley HA and Broman AT: The number of people with glaucoma worldwide in 2010-2020. Br J Ophthalmol. 90:262–267. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tamm ER: The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 88:648–655. 2009. View Article : Google Scholar : PubMed/NCBI | |
Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, Fautsch MP, Murphy CJ and Russell P: Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 52:2147–2152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Raghunathan VK, Morgan JT, Dreier B, Reilly CM, Thomasy SM, Wood JA, Ly I, Tuyen BC, Hughbanks M, Murphy CJ, et al: Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ. Invest Ophthalmol Vis Sci. 54:378–386. 2013. View Article : Google Scholar : | |
Comes N, Buie LK and Borras T: Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells. 16:243–259. 2011. View Article : Google Scholar : PubMed/NCBI |