1
|
Grimaldi V, De Pascale MR, Zullo A,
Soricelli A, Infante T, Mancini FP and Napoli C: Evidence of
epigenetic tags in cardiac fibrosis. J Cardiol. 69:401–408. 2017.
View Article : Google Scholar
|
2
|
Barallobre-Barreiro J, Didangelos A,
Schoendube FA, Drozdov I, Yin X, Fernán dez-Caggiano M, Willeit P,
Puntmann VO, Aldama-López G, Shah AM, et al: Proteomics analysis of
cardiac extracellular matrix remodeling in a porcine model of
ischemia/reperfusion injury. Circulation. 125:789–802. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Davel AP, Brum PC and Rossoni LV:
Isoproterenol induces vascular oxidative stress and endothelial
dysfunction via a Gi α-coupled β2-adrenoceptor signaling path way.
PLoS One. 9:e918772014. View Article : Google Scholar
|
4
|
Shin E, Ko KS, Rhee BD, Han J and Kim N:
Different effects of prolonged β-adren ergic stimulation on heart
and cerebral artery. Integr Med Res. 3:204–210. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gallo S, Sala V, Gatti S and Crepaldi T:
Cellular and molecular mechanisms of HG F/MET in the cardiovascular
system. Clin Sci (Lond). 129:1173–1193. 2015. View Article : Google Scholar
|
6
|
Wang S, Luo M, Zhang Z, Gu J, Chen J,
Payne KM, Tan Y, Wang Y, Yin X, Zhang X, et al: Zinc deficiency
exacerbat es while zinc supplement attenuates cardiac hypertrophy
in high-fat diet-induced obese mice through modulating p38
MAPK-dependent signaling. Toxicol Lett. 258:134–146. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y
and Zheng Y: The role of ERK1/2 in the development of diabetic
Cardiomyopathy. Int J Mol Sci. 17:E20012016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao X, Ji J, Yu LR, Veenstra T and Wang
XW: Cell cycle-dependent phosphorylati on of nucleophosmin and its
potential regulation by peptidyl-prolyl cis/trans iso merase. J Mol
Biochem. 4:95–103. 2015.
|
9
|
Rogals MJ, Greenwood AI, Kwon J, Lu KP and
Nicholson LK: Neighboring phosphoSer-Pro motifs in the undefined
domain of IRAK1 impart bivalent advantage for Pin1 binding. FEBS J.
283:4528–4548. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shah M, Smolko CM, Kinicki S, Chapman ZD,
Brautigan DL and Janes KA: Profiling subcellular protein
phosphatase responses to coxsackievirus B3 infection of
cardiomyocytes. Mol Cell Proteomics. 16(4 suppl 1): S244–S262.
2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lu KP and Zhou XZ: The prolyl isomerase
IN1: A pivotal new twist in phosphorylation signalling and disease.
Nat Rev Mol Cell Biol. 8:904–916. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wulf G, Finn G, Suizu F and Lu KP:
Phosphorylation-specific prolyl isomerization: Is there an
underlying theme. Nat Cell Biol. 7:435–441. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hariharan N and Sussman MA: Pin1: A
Molecular Orchestrator in the Heart. Trends Cardiovasc Med.
24:256–262. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liao XH, Zhang AL, Zheng M, Li MQ, Chen
CP, Xu H, Chu QS, Yang D, Lu W, Tsai TF, et al: Chemical or genetic
Pin1 inhibition exerts potent anticancer activity against
hepatocellular carcinoma by blocking multiple cancer-driving
pathways. Sci Rep. 7:436392017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen ZJ, Esnault S, Rosenthal LA, Szakaly
RJ, Sorkness RL, Westmark PR, Sandor M and Malter JS: Pin1
regulates TGF-beta1 production by activated human and murine
eosinophils and contribute stoallergic lung fibrosis. J Clin
Invest. 118:479–490. 2008.PubMed/NCBI
|
16
|
Driver JA, Zhou XZ and Lu KP: Pin1
dysregulation helps to explain the inverse association between
cancer and Alzheimer's disease. Biochim Biophys Acta.
1850:2069–2076. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX,
Huang HK, Uchida T, Bronson R, Bing G, Li X, et al: Role of the
prolyl isomerase Pin1 in protecting against age-dependent
neurodegeneration. Nature. 424:556–561. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liou YC, Zhou XZ and Lu KP: Prolyl
isomerase Pin1 as a molecular switch to det ermine the fate of
phosphoproteins. Trends Biochem Sci. 36:501–514. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Toko H, Konstandin MH, Doroudgar S,
Ormachea L, Joyo E, Joyo AY, Din S, Gude NA, Collins B, Völkers M,
et al: Regulation of cardiac hypertrophic signaling by prolyl
isomerase Pin1. Circ Res. 112:1244–1252. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Toko H, Hariharan N, Konstandin MH,
Ormachea L, McGregor M, Gude NA, Sundararaman B, Joyo E, Joyo AY,
Collins B, et al: Differential regulation of cellular senescence
and differentiation by pro lyl isomerase pin1 in cardiac progenitor
cells. J Biol Chem. 289:5348–5356. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Carbone L: Pain management standards in
the eighth edition of the Guide for the Care and Use of Laboratory
Animals. J Am Assoc Lab Anim Sci. 51:322–328. 2012.PubMed/NCBI
|
22
|
Cho YS, Lee SY, Kim KH and Nam YK:
Differential modulations of two glyceralde hyde 3-phosphate
dehydrogenase mRNAs in response to bacterial and viral cha llenges
in a marine teleost Oplegnathus fasciatus (Perciformes). Fish
Shellfish Immunol. 25:472–476. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gauthaman KK, Saleem MT, Thanislas PT,
Prabhu VV, Krishnamoorthy KK, Devaraj NS and Somasundaram JS:
Cardioprotective effect of the Hibiscus rosa sinensis flo wers in
an oxidative stress model of myocardial ischemic reperfusion injury
in rat. BMC Complement Altern Med. 6:322006. View Article : Google Scholar
|
24
|
Horn MA and Trafford AW: Aging and the
cardiac collagen matrix: Novel mediators of fibrotic remodelling. J
Mol Cell Cardiol. 93:175–185. 2016. View Article : Google Scholar :
|
25
|
Keune WJ, Jones DR and Divecha N: PtdIns5P
and Pin1 in oxidative stress signaling. Adv Biol Regul. 53:179–189.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Paneni F, Costantino S, Castello L,
Battista R, Capretti G, Chiandotto S, D'Amario D, Scavone G,
Villano A, Rustighi A, et al: Targeting prolyl-isomerase Pin1
prevents mitochondrial oxidative stress and vascular dysfunction:
Insights in patients with diabetes. Eur Heart J. 36:817–828. 2015.
View Article : Google Scholar
|
27
|
Zhou S, Sun W, Zhang Z and Zheng Y: The
role of Nrf2-mediated pathway in cardiac remodeling and heart
failure. Oxid Med Cell Longev. 2014:2604292014. View Article : Google Scholar : PubMed/NCBI
|
28
|
D'Elia E, Vaduganathan M, Gori M, Gavazzi
A, Butler J and Senni M: Role of biomarkers in cardiac structure
phenotyping in heart failure with preserved ejection fraction:
Critical appraisal and practical use. Eur J Heart Fail.
17:1231–1239. 2015. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Wencker D, Chandra M, Nguyen K, Miao W,
Garantziotis S, Factor SM, Shirani J, Armstrong RC and Kitsis RN: A
mechanistic role for cardiac myocyte apoptosis in heart failure. J
Clin Invest. 111:1497–1504. 2003. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Hynes RO: The extracellular matrix: Not
just pretty fibrils. Science. 27;326:1216–1219. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ranganathan R, Lu KP, Hunter T and Noel
JP: Structural and functional analysis of the mitotic rotamase Pin1
suggests substrate recognition is phosphorylation dependent. Cell.
89:875–886. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sakai S, Shimojo N, Kimura T, Tajiri K,
Maruyama H, Homma S, Kuga K, Mizutani T, Aonuma K and Miyauchi T:
Involvement of peptidyl-prolyl isomerase Pin1 in the inhibito ry
effect of fluvastatin on endothelin-1-induced cardiomyocyte
hypertrophy. Life Sci. 102:98–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Van Raamsdonk JM and Hekimi S: Deletion of
the mitochondrial superoxide dismu tase sod-2 extends lifespan in
Caenorhabditis elegans. Plos Genet. 5:e10003612009. View Article : Google Scholar
|
34
|
Shen ZJ, Braun RK, Hu J, Xie Q, Chu H,
Love RB, Stodola LA, Rosenthal LA, Szakaly RJ, Sorkness RL and
Malter JS: Pin1 protein regulates Smad protein signaling and
pulmonary fibrosis. J Biol Chem. 287:23294–23305. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu X, Liang E, Song X, Du Z, Zhang Y and
Zhao Y: Inhibition of Pin1 alleviates myocardial fibrosis and
dysfunction in STZ-induced diabetic mice. Biochem Biophys Res
Commun. 479:109–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tarone G, Sbroggiò M and Brancaccio M: Key
role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol
Life Sci. 70:4047–4054. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zheng M, Dilly K, Dos Santos Cruz J, Li M,
Gu Y, Ursitti JA, Chen J, Ross J Jr, Chien KR, Lederer JW and Wang
Y: Sarcoplasmic reticulum calcium defect in Ras-induced
hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol.
286:H424–H433. 2004. View Article : Google Scholar
|
38
|
Purcell NH, Wilkins BJ, York A,
Saba-El-Leil MK, Meloche S, Robbins J and Molkentin JD: Genetic
inhibition of cardiac ERK1/2 promotes stress-induced apopto sis and
heart failure but has no effect on hypertrophy in vivo. Proc Natl
Acad Sci USA. 104:14074–14079. 2007. View Article : Google Scholar
|
39
|
Aoki Y, Niihori T, Narumi Y, Kure S and
Matsubara Y: The RAS/MAPK syndromes: Novel roles of the RAS pathway
in human genetic disorders. Hum Mutat. 29:992–1006. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Creemers EE and Pinto YM: Molecular
mechanisms that control interstitial fibrosis in the
pressure-overloaded heart. Cardiovasc Res. 89:265–272. 2011.
View Article : Google Scholar
|
41
|
Reichert K, Pereira do Carmo HR, Galluce
Torina A, Diógenes de Carvalho D, Carvalho Sposito A, de Souza
Vilarinho KA, da Mota Silveira-Filho L, Martins de Oliveira PP and
Petrucci O: Atorvastatin improves ventricular remodeling after
myocardial infarction by interfering with collagen metabolism. PLoS
One. 11:e01668452016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shen ZJ, Hu J, Shiizaki K, Kuro-o M and
Malter JS: Phosphate-induced renal fibrosis requires the Prolyl
isomerase Pin1. PLoS One. 11:e01500932016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Frantz S, Kelly RA and Bourcier T: Role of
TLR-2 in the activation of nuclear factor kappaB by oxidative
stress in cardiac myocytes. J Biol Chem. 276:5197–5203. 2001.
View Article : Google Scholar
|
44
|
Matsushima S, Ide T, Yamato M, Matsusaka
H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara
T, et al: Over expression of mitochondrial peroxiredoxin-3 prevents
left ventricular remo deling and failure after myocardial
infarction in mice. Circulation. 113:1779–1786. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Baudino TA, Carver W, Giles W and Borg TK:
Cardiac fibroblasts: Friend or foe. Am J Physiol Heart Circ
Physiol. 291:H1015–H1026. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tanaka K, Honda M and Takabatake T: Redox
regulation of MAPK pathways and cardiac hypertrophy in adult rat
cardiac myocyte. J Am Coll Cardiol. 37:676–685. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Pinton P, Rimessi A, Marchi S, Orsini F,
Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F,
Wieckowski MR, et al: Protein kinase C beta and prolyl isomerase 1
regulate mitochondrial effects of the life-span determinant p66Shc.
Science. 315:659–663. 2007. View Article : Google Scholar : PubMed/NCBI
|