Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review)
- Authors:
- Marina Devetzi
- Maria Goulielmaki
- Nicolas Khoury
- Demetrios A. Spandidos
- Georgia Sotiropoulou
- Ioannis Christodoulou
- Vassilis Zoumpourlis
-
Affiliations: Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Department of Pharmacy, University of Patras, Rion, 26500 Patras, Greece - Published online on: January 3, 2018 https://doi.org/10.3892/ijmm.2018.3361
- Pages: 1177-1186
-
Copyright: © Devetzi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F and Adam A: The kallikrein-kinin system: Current and future pharmacological targets. J Pharmacol Sci. 99:6–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kashuba E, Bailey J, Allsup D and Cawkwell L: The kinin-kallikrein system: Physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers. 18:279–296. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bourdet B, Pécher C, Minville V, Jaafar A, Allard J, Blaes N, Girolami JP and Tack I: Distribution and expression of B2-kinin receptor on human leukocyte subsets in young adults and elderly using flow cytometry. Neuropeptides. 44:155–161. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chao J, Bledsoe G, Yin H and Chao L: The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem. 387:665–675. 2006. View Article : Google Scholar : PubMed/NCBI | |
Emami N and Diamandis EP: New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol. 1:269–287. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bryant JW and Shariat-Madar Z: Human plasma kallikrein-kinin system: Physiological and biochemical parameters. Cardiovasc Hematol Agents Med Chem. 7:234–250. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hillmeister P and Persson PB: The kallikrein-kinin system. Acta Physiol (Oxf). 206:215–219. 2012. View Article : Google Scholar | |
Björkqvist J, Jämsä A and Renné T: Plasma kallikrein: The bradykinin-producing enzyme. Thromb Haemost. 110:399–407. 2013. View Article : Google Scholar : PubMed/NCBI | |
Borgoño CA and Diamandis EP: The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer. 4:876–890. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sotiropoulou G, Pampalakis G and Diamandis EP: Functional roles of human kallikrein-related peptidases. J Biol Chem. 284:32989–32994. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee KD: Applications of mesenchymal stem cells: An updated review. Chang Gung Med J. 31:228–236. 2008.PubMed/NCBI | |
Christodoulou I, Kolisis FN, Papaevangeliou D and Zoumpourlis V: Comparative evaluation of human mesenchymal stem cells of fetal (Wharton’s jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: Considerations for cytotherapy. Stem Cells Int. 2013:2461342013. View Article : Google Scholar | |
Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, Talaat KA, Ashaal AE and El-Shal AS: Mesenchymal stem cells therapy: A promising cell based therapy for treatment of myocardial infraction. J Gene Med. 19:e29952017. View Article : Google Scholar | |
Rhee KJ, Lee JI and Eom YW: Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci. 16:30015–30033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rehman J, Li J, Orschell CM and March KL: Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 107:1164–1169. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hristov M and Weber C: Endothelial progenitor cells: Characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 8:498–508. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kränkel N, Lüscher TF and Landmesser U: ‘Endothelial progenitor cells’ as a therapeutic strategy in cardiovascular disease. Curr Vasc Pharmacol. 10:107–124. 2012. View Article : Google Scholar | |
Fu SS, Li FJ, Wang YY, You AB, Qie YL, Meng X, Li JR, Li BC, Zhang Y and Da Li Q: Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression. PLoS One. 8:e730352013. View Article : Google Scholar | |
Kamei N, Atesok K and Ochi M: The use of endothelial progenitor cells for the regeneration of musculoskeletal and neural tissues. Stem Cells Int. 2017:19608042017. View Article : Google Scholar : PubMed/NCBI | |
Hickson LJ, Eirin A and Lerman LO: Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89:767–778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Luo C, Cao B, Hu H, Wang S, Yue H, Chen L and Zhou Z: Endothelial progenitor cells for ischemic stroke: Update on basic research and application. Stem Cells Int. 2017:21934322017. View Article : Google Scholar : PubMed/NCBI | |
Sage EK, Thakrar RM and Janes SM: Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy. 18:1435–1445. 2016. View Article : Google Scholar : PubMed/NCBI | |
Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008. View Article : Google Scholar | |
Mishra PJ, Mishra PJ, Glod JW and Banerjee D: Mesenchymal stem cells: Flip side of the coin. Cancer Res. 69:1255–1258. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Wang Y, Xie HY and Zheng SS: Immunosuppressive effects of rat mesenchymal stem cells: Involvement of CD4+CD25+ regulatory T cells. Hepatobiliary Pancreat Dis Int. 7:608–614. 2008.PubMed/NCBI | |
Borlongan CV: Bone marrow stem cell mobilization in stroke: A ‘bonehead’ may be good after all! Leukemia. 25:1674–1686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T and Gronthos S: Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood. 105:3793–3801. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fong CY, Richards M, Manasi N, Biswas A and Bongso A: Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online. 15:708–718. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK and Bongso A: Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 7:1–16. 2011. View Article : Google Scholar | |
Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D and McIntosh KR: Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 26:2865–2874. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prasanna SJ and Jahnavi VS: Wharton’s jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: A closer look into their regenerative and immunomodulatory properties. Open Tissue Eng Regen Med J. 4:28–38. 2011. View Article : Google Scholar | |
Yoon J, Min BG, Kim Y-H, Shim WJ, Ro YM and Lim D-S: Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol. 60:277–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Xie Q, Pan G, Wang J and Wang M: Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg. 30:353–361. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wolf D, Reinhard A, Krause U, Seckinger A, Katus HA, Kuecherer H and Hansen A: Stem cell therapy improves myocardial perfusion and cardiac synchronicity: New application for echocardiography. J Am Soc Echocardiogr. 20:512–520. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X and Hu J: Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology. 107:17–29. 2007. View Article : Google Scholar | |
Guo J, Lin GS, Bao CY, Hu ZM and Hu MY: Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation. 30:97–104. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Xu Z, Xu Y and Cui G: Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis. 16:245–255. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Bledsoe G, Yin H, Shen B, Chao L and Chao J: Tissue kallikrein-modified mesenchymal stem cells provide enhanced protection against ischemic cardiac injury after myocardial infarction. Circ J. 77:2134–2144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, et al: Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 102:11474–11479. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goradel NH, Hoor FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A and Mirzaei H: Stem cell therapy: A new therapeutic option for cardiovascular diseases. J Cell Biochem. 119:95–104. 2018. View Article : Google Scholar | |
Chen XL, Zhang Q, Zhao R and Medford RM: Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: Role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol. 286:H1001–H1007. 2004. View Article : Google Scholar | |
Caplan AI and Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 98:1076–1084. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi SH, Jung SY, Kwon SM and Baek SH: Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges. Circ J. 76:1307–1312. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y and Zhang HY: Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis. 24:549–558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Petersen BE, Steindler DA, Jorgensen ML and Laywell ED: Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells. 24:1054–1064. 2006. View Article : Google Scholar | |
Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL and Berger F: Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 24:2868–2876. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tseng PY, Chen CJ, Sheu CC, Yu CW and Huang YS: Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci. 69:95–102. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dezawa M, Hoshino M and Ide C: Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin Biol Ther. 5:427–435. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ, Kim N and Cho SG: The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med. 45:e22013. View Article : Google Scholar : PubMed/NCBI | |
Aleynik A, Gernavage KM, Mourad YS, Sherman LS, Liu K, Gubenko YA and Rameshwar P: Stem cell delivery of therapies for brain disorders. Clin Transl Med. 3:242014. View Article : Google Scholar : PubMed/NCBI | |
Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T, et al: Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular β-amyloid deposits in Alzheimer mice. Stem Cells Dev. 17:423–439. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tanna T and Sachan V: Mesenchymal stem cells: Potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther. 9:513–521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galieva LR, Mukhamedshina YO, Arkhipova SS and Rizvanov AA: Human umbilical cord blood cell transplantation in neuroregenerative strategies. Front Pharmacol. 8:6282017. View Article : Google Scholar : PubMed/NCBI | |
Lee NK, Na DL and Chang JW: Killing two birds with one stone: The multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. Histol Histopathol. Nov 30–2017.Epub ahead of print. PubMed/NCBI | |
Gärtner A, Pereira T, Gomes R, Luís AL, França ML, Geuna S, Armada-da-Silva P and Maurício AC: Mesenchymal stem cells from extra-embryonic tissues for tissue engineering - regeneration of the peripheral nerve. Advances in Biomaterials Science and Biomedical Applications. Pignatello R: InTech; 2013, View Article : Google Scholar | |
Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL and Maurício AC: Perspectives of employing mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for peripheral nerve repair. Int Rev Neurobiol. 108:79–120. 2013. View Article : Google Scholar | |
Chambers BE and Wingert RA: Renal progenitors: Roles in kidney disease and regeneration. World J Stem Cells. 8:367–375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peired AJ, Sisti A and Romagnani P: Mesenchymal stem cell-based therapy for kidney disease: A review of clinical evidence. Stem Cells Int. 2016:47986392016. View Article : Google Scholar : PubMed/NCBI | |
Aghajani Nargesi A, Lerman LO and Eirin A: Mesenchymal stem cell-derived extracellular vesicles for kidney repair: Current status and looming challenges. Stem Cell Res Ther. 8:2732017. View Article : Google Scholar : PubMed/NCBI | |
Tögel F, Hu Z, Weiss K, Isaac J, Lange C and Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 289:F31–F42. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR and Westenfelder C: Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. 68:1613–1617. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chao J, Bledsoe G and Chao L: Kallikrein-kinin in stem cell therapy. World J Stem Cells. 6:448–457. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ezquer F, Ezquer M, Simon V, Pardo F, Yañez A, Carpio D and Conget P: Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol Blood Marrow Transplant. 15:1354–1365. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H and Li D: Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med. 30:85–92. 2012.PubMed/NCBI | |
Castiglione RC, Maron-Gutierrez T, Barbosa CM, Ornellas FM, Barreira AL, Dibarros CB, Vasconcelos-dos-Santos A, Paredes BD, Pascarelli BM, Diaz BL, et al: Bone marrow-derived mononuclear cells promote improvement in glomerular function in rats with early diabetic nephropathy. Cell Physiol Biochem. 32:699–718. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A and Lerman LO: Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells. 31:117–125. 2013. View Article : Google Scholar | |
Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, Lerman A, Textor SC and Lerman LO: Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 30:1030–1041. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D and Camussi G: Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 166:545–555. 2005. View Article : Google Scholar : PubMed/NCBI | |
Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, Parente E, Gacci M, Carini M, Rotondi M, et al: Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells. 30:1714–1725. 2012. View Article : Google Scholar : PubMed/NCBI | |
Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA and Verhaar MC: Cell-based therapies for experimental chronic kidney disease: A systematic review and meta-analysis. Dis Model Mech. 8:281–293. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Wu Y, Xu Y, Sun L and Zhang X: Human umbilical mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis. Am J Med Sci. 346:486–493. 2013. View Article : Google Scholar : PubMed/NCBI | |
Belingheri M, Lazzari L, Parazzi V, Groppali E, Biagi E, Gaipa G, Giordano R, Rastaldi MP, Croci D, Biondi A, et al: Allogeneic mesenchymal stem cell infusion for the stabilization of focal segmental glomerulosclerosis. Biologicals. 41:439–445. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A and Shi S: Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells. 27:1421–1432. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, et al: Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62:2467–2475. 2010. View Article : Google Scholar : PubMed/NCBI | |
Munir H and McGettrick HM: Mesenchymal stem cell therapy for autoimmune disease: Risks and rewards. Stem Cells Dev. 24:2091–2100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flores AI, Gómez-Gómez GJ, Masedo-González Á and Martínez-Montiel MP: Stem cell therapy in inflammatory bowel disease: A promising therapeutic strategy? World J Stem Cells. 7:343–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang TC, Pang CY, Chiu SC, Ding DC and Tsai RK: Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One. 7:e465042012. View Article : Google Scholar : PubMed/NCBI | |
Werner N and Nickenig G: Endothelial progenitor cells in health and atherosclerotic disease. Ann Med. 39:82–90. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jujo K, Ii M and Losordo DW: Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol. 45:530–544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon ES, Oh HY and Kim DK: Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol. 24:1246–1252. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM and Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 89:E1–E7. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW and Weber C: Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol. 103:69–77. 2008. View Article : Google Scholar | |
Umemura T and Higashi Y: Endothelial progenitor cells: Therapeutic target for cardiovascular diseases. J Pharmacol Sci. 108:1–6. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Sheng Z, Li Y, Yan F, Fu C, Li Y, Ma G, Liu N, Chao J and Chao L: Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity. Hum Gene Ther. 23:859–870. 2012. View Article : Google Scholar : PubMed/NCBI | |
Simard T, Jung RG, Motazedian P, Di Santo P, Ramirez FD, Russo JJ, Labinaz A, Yousef A, Anantharam B, Pourdjabbar A and Hibbert B: Progenitor cells for arterial repair: Incremental advancements towards therapeutic reality. Stem Cells Int. 2017:82704982017. View Article : Google Scholar : PubMed/NCBI | |
Kwon O, Miller S, Li N, Khan A, Kadry Z and Uemura T: Bone marrow-derived endothelial progenitor cells and endothelial cells may contribute to endothelial repair in the kidney immediately after ischemia-reperfusion. J Histochem Cytochem. 58:687–694. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C and Goligorsky MS: Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: Modulation by ischemic preconditioning. Am J Physiol Renal Physiol. 291:F176–F185. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rosell A, Morancho A, Navarro-Sobrino M, Martínez-Saez E, Hernández-Guillamon M, Lope-Piedrafita S, Barceló V, Borrás F, Penalba A, García-Bonilla L and Montaner J: Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. 8:e732442013. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, Liu SX, Wang H and Yang XF: Endothelial progenitor cells in ischemic stroke: An exploration from hypothesis to therapy. J Hematol Oncol. 8:332015. View Article : Google Scholar : PubMed/NCBI | |
Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS and Dzau VJ: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 9:1195–1201. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dzau VJ, Gnecchi M and Pachori AS: Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol. 46:1351–1353. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mastri M, Lin H and Lee T: Enhancing the efficacy of mesenchymal stem cell therapy. World J Stem Cells. 6:82–93. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Suryaprakash S, Lao YH and Leong KW: Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 84:3–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, et al: Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol. July 13–2017.Epub ahead of print. PubMed/NCBI | |
Tang YL, Tang Y, Zhang YC, Qian K, Shen L and Phillips MI: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 46:1339–1350. 2005. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, et al: Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 25:1168–1173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gnecchi M, He H, Melo LG, Noiseaux N, Morello F, de Boer RA, Zhang L, Pratt RE, Dzau VJ and Ingwall JS: Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells. 27:971–979. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye S, Peng X, Li W and Xu W: Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 20:103–113. 2011. View Article : Google Scholar | |
Yuan L, Wu MJ, Sun HY, Xiong J, Zhang Y, Liu CY, Fu LL, Liu DM, Liu HQ and Mei CL: VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol. 300:F207–F218. 2011. View Article : Google Scholar | |
Regoli D, Plante GE and Gobeil F Jr: Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther. 135:94–111. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiong W, Chen LM, Woodley-Miller C, Simson JA and Chao J: Identification, purification, and localization of tissue kallikrein in rat heart. Biochem J. 267:639–646. 1990. View Article : Google Scholar : PubMed/NCBI | |
Nolly H, Carbini LA, Scicli G, Carretero OA and Scicli AG: A local kallikrein-kinin system is present in rat hearts. Hypertension. 23:919–923. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wolf WC, Harley RA, Sluce D, Chao L and Chao J: Localization and expression of tissue kallikrein and kallistatin in human blood vessels. J Histochem Cytochem. 47:221–228. 1999. View Article : Google Scholar : PubMed/NCBI | |
Agata J, Chao L and Chao J: Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension. 40:653–659. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yao YY, Yin H, Shen B, Chao L and Chao J: Tissue kallikrein infusion prevents cardiomyocyte apoptosis, inflammation and ventricular remodeling after myocardial infarction. Regul Pept. 140:12–20. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yao YY, Yin H, Shen B, Smith RS Jr, Liu Y, Gao L, Chao L and Chao J: Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3beta pathway. Cardiovasc Res. 80:354–364. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Chao L and Chao J: Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. J Biol Chem. 280:8022–8030. 2005. View Article : Google Scholar | |
Westermann D, Schultheiss HP and Tschöpe C: New perspective on the tissue kallikrein-kinin system in myocardial infarction: Role of angiogenesis and cardiac regeneration. Int Immunopharmacol. 8:148–154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Chao L and Chao J: Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82:156–165. 2008. View Article : Google Scholar | |
Yayama K, Wang C, Chao L and Chao J: Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. Hypertension. 31:1104–1110. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wolf WC, Yoshida H, Agata J, Chao L and Chao J: Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int. 58:730–739. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bledsoe G, Chao L and Chao J: Kallikrein gene delivery attenuates cardiac remodeling and promotes neovascularization in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 285:H1479–H1488. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chao J, Shen B, Gao L, Xia CF, Bledsoe G and Chao L: Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem. 391:345–355. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spillmann F, Graiani G, Van Linthout S, Meloni M, Campesi I, Lagrasta C, Westermann D, Tschöpe C, Quaini F, Emanueli C and Madeddu P: Regional and global protective effects of tissue kallikrein gene delivery to the peri-infarct myocardium. Regen Med. 1:235–254. 2006. View Article : Google Scholar | |
Emanueli C, Minasi A, Zacheo A, Chao J, Chao L, Salis MB, Straino S, Tozzi MG, Smith R, Gaspa L, et al: Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation. 103:125–132. 2001. View Article : Google Scholar : PubMed/NCBI | |
Emanueli C and Madeddu P: Angiogenesis therapy with human tissue kallikrein for the treatment of ischemic diseases. Arch Mal Coeur Vaiss. 97:679–687. 2004.PubMed/NCBI | |
Murakami H, Miao RQ, Chao L and Chao J: Adenovirus-mediated kallikrein gene transfer inhibits neointima formation via increased production of nitric oxide in rat artery. Immunopharmacology. 44:137–143. 1999. View Article : Google Scholar : PubMed/NCBI | |
Murakami H, Yayama K, Miao RQ, Wang C, Chao L and Chao J: Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. Hypertension. 34:164–170. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hagiwara M, Shen B, Chao L and Chao J: Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther. 19:807–819. 2008. View Article : Google Scholar : PubMed/NCBI | |
González A, Ravassa S, Beaumont J, López B and Díez J: New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol. 58:1833–1843. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tschöpe C, Walther T, Königer J, Spillmann F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M, Schultheiss HP and Noutsias M: Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J. 18:828–835. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Sheng Z, Li Y, Fu C, Ma G, Liu N, Chao J and Chao L: Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis. Lab Invest. 93:577–591. 2013. View Article : Google Scholar : PubMed/NCBI | |
Naicker S, Naidoo S, Ramsaroop R, Moodley D and Bhoola K: Tissue kallikrein and kinins in renal disease. Immunopharmacology. 44:183–192. 1999. View Article : Google Scholar : PubMed/NCBI | |
Katori M and Majima M: A missing link between a high salt intake and blood pressure increase. J Pharmacol Sci. 100:370–390. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sharma JN and Narayanan P: The kallikrein-kinin pathways in hypertension and diabetes. Prog Drug Res. 69:15–36. 2014.PubMed/NCBI | |
Uehara Y, Hirawa N, Kawabata Y, Suzuki T, Ohshima N, Oka K, Ikeda T, Goto A, Toyo-oka T and Kizuki K: Long-term infusion of kallikrein attenuates renal injury in Dahl salt-sensitive rats. Hypertension. 24:770–778. 1994. View Article : Google Scholar : PubMed/NCBI | |
Chao J, Zhang JJ, Lin KF and Chao L: Adenovirus-mediated kallikrein gene delivery reverses salt-induced renal injury in Dahl salt-sensitive rats. Kidney Int. 54:1250–1260. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hirawa N, Uehara Y, Suzuki T, Kawabata Y, Numabe A, Gomi T, Lkeda T, Kizuki K and Omata M: Regression of glomerular injury by kallikrein infusion in Dahl salt-sensitive rats is a bradykinin B2-receptor-mediated event. Nephron. 81:183–193. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bledsoe G, Shen B, Yao Y, Zhang JJ, Chao L and Chao J: Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther. 17:545–555. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang JJ, Bledsoe G, Kato K, Chao L and Chao J: Tissue kallikrein attenuates salt-induced renal fibrosis by inhibition of oxidative stress. Kidney Int. 66:722–732. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Bledsoe G, Hagiwara M, Yang ZR, Shen B, Chao L and Chao J: Blockade of endogenous tissue kallikrein aggravates renal injury by enhancing oxidative stress and inhibiting matrix degradation. Am J Physiol Renal Physiol. 298:F1033–F1040. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xia CF, Bledsoe G, Chao L and Chao J: Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol. 289:F622–F631. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP and Bascands JL: In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 110:371–379. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bledsoe G, Shen B, Yao YY, Hagiwara M, Mizell B, Teuton M, Grass D, Chao L and Chao J: Role of tissue kallikrein in prevention and recovery of gentamicin-induced renal injury. Toxicol Sci. 102:433–443. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dellalibera-Joviliano R, Reis ML and Donadi EA: Kinin system in lupus nephritis. Int Immunopharmacol. 1:1889–1896. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Li QZ, Delgado-Vega AM, Abelson AK, Sánchez E, Kelly JA, Li L, Liu Y, Zhou J, Yan M, et al Profile Study Group; Italian Collaborative Group; German Collaborative Group; Spanish Collaborative Group; Argentinian Collaborative Group; SLEGEN Consortium: Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J Clin Invest. 119:911–923. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Raman I, Du Y, Yan M, Min S, Yang J, Fang X, Li W, Lu J, Zhou XJ, et al: Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress. PLoS One. 8:e677902013. View Article : Google Scholar : PubMed/NCBI | |
Xia CF, Yin H, Borlongan CV, Chao L and Chao J: Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 43:452–459. 2004. View Article : Google Scholar | |
Zhang JJ, Chao L, Chao J, Chu Y and Heistad DD: Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke. 30:1925–1931; discussion 1931-1932. 1999. View Article : Google Scholar : PubMed/NCBI | |
Xia CF, Yin H, Yao YY, Borlongan CV, Chao L and Chao J: Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 17:206–219. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chao J and Chao L: Experimental therapy with tissue kallikrein against cerebral ischemia. Front Biosci. 11:1323–1327. 2006. View Article : Google Scholar | |
Kizuki K, Iwadate H and Ookubo R: Growth-stimulating effect of kallikrein on rat neural stem cells - II. Immunocytochemical analysis and specificity of the enzyme for neural stem cells. Yakugaku Zasshi. 127:919–922. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu H, Yang F, Chen G, Zhou H, Tang M, Zhang R and Dong Q: Tissue kallikrein protects cortical neurons against hypoxia/reoxygenation injury via the ERK1/2 pathway. Biochem Biophys Res Commun. 407:283–287. 2011. View Article : Google Scholar : PubMed/NCBI |