1
|
Boison D: Adenosine kinase: Exploitation
for therapeutic gain. Pharmacol Rev. 65:906–943. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Andres CM and Fox IH: Purification and
properties of human placental adenosine kinase. J Biol Chem.
254:11388–11393. 1979.PubMed/NCBI
|
3
|
Antonioli L, Blandizzi C, Pacher P and
Haskó G: Immunity, inflammation and cancer: A leading role for
adenosine. Nat Rev Cancer. 13:842–857. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Boison D: The adenosine kinase hypothesis
of epileptogenesis. Prog Neurobiol. 84:249–262. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lusardi TA, Lytle NK, Szybala C and Boison
D: Caffeine prevents acute mortality after TBI in rats without
increased morbidity. Exp Neurol. 234:161–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pignataro G, Simon RP and Boison D:
Transgenic overexpression of adenosine kinase aggravates cell death
in ischemia. J Cereb Blood Flow Metab. 27:1–5. 2007. View Article : Google Scholar
|
7
|
Pawelczyk T, Sakowicz M,
Szczepanska-Konkel M and Angielski S: Decreased expression of
adenosine kinase in streptozotocin-induced diabetes mellitus rats.
Arch Biochem Biophys. 375:1–6. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Giglioni S, Leoncini R, Aceto E, Chessa A,
Civitelli S, Bernini A, Tanzini G, Carraro F, Pucci A and Vannoni
D: Adenosine kinase gene expression in human colorectal cancer.
Nucleosides Nucleotides Nucleic Acids. 27:750–754. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Raggatt LJ and Partridge NC: Cellular and
molecular mechanisms of bone remodeling. J Biol Chem.
285:25103–25108. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mediero A and Cronstein BN: Adenosine and
bone metabolism. Trends Endocrinol Metab. 24:290–300. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
He W, Mazumder A, Wilder T and Cronstein
BN: Adenosine regulates bone metabolism via A1, A2A, and A2B
receptors in bone marrow cells from normal humans and patients with
multiple myeloma. FASEB J. 27:3446–3454. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
He W and Cronstein BN: Adenosine A1
receptor regulates osteoclast formation by altering TRAF6/TAK1
signaling. Purinergic Signal. 8:327–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mediero A, Kara FM, Wilder T and Cronstein
BN: Adenosine A2A receptor ligation inhibits osteoclast formation.
Am J Pathol. 180:775–786. 2012. View Article : Google Scholar :
|
14
|
Corciulo C, Wilder T and Cronstein BN:
Adenosine A2B receptors play an important role in bone homeostasis.
Purinergic Signal. 12:537–547. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rath-Wolfson L, Bar-Yehuda S, Madi L,
Ochaion A, Cohen S, Zabutti A and Fishman P: IB-MECA, an A3
adenosine receptor agonist prevents bone resorption in rats with
adjuvant induced arthritis. Clin Exp Rheumatol. 24:400–406.
2006.PubMed/NCBI
|
16
|
Staufner C, Lindner M, Dionisi-Vici C,
Freisinger P, Dobbelaere D, Douillard C, Makhseed N, Straub BK,
Kahrizi K, Ballhausen D, et al: Adenosine kinase deficiency:
Expanding the clinical spectrum and evaluating therapeutic options.
J Inherit Metab Dis. 39:273–283. 2016. View Article : Google Scholar
|
17
|
Boison D, Scheurer L, Zumsteg V, Rülicke
T, Litynski P, Fowler B, Brandner S and Mohler H: Neonatal hepatic
steatosis by disruption of the adenosine kinase gene. Proc Natl
Acad Sci USA. 99:6985–6990. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Massaro EJ and Rogers JM: The Skeleton:
Biochemical, Genetic, and Molecular Interactions in Development and
Homeostasis. Humana Press; Totowa, NJ: 2004, View Article : Google Scholar
|
19
|
Sandau US, Colino-Oliveira M, Jones A,
Saleumvong B, Coffman SQ, Liu L, Miranda-Lourenço C, Palminha C,
Batalha VL, Xu Y, et al: Adenosine kinase deficiency in the brain
results in maladaptive synaptic plasticity. J Neurosci.
36:12117–12128. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Clausen BE, Burkhardt C, Reith W,
Renkawitz R and Förster I: Conditional gene targeting in
macrophages and granulocytes using LysMcre mice. Transgenic Res.
8:265–277. 1999. View Article : Google Scholar
|
21
|
Takahashi N, Udagawa N, Tanaka S and Suda
T: Generating murine osteoclasts from bone marrow. Methods Mol Med.
80:129–144. 2003.PubMed/NCBI
|
22
|
Tevlin R, McArdle A, Chan CK, Pluvinage J,
Walmsley GG, Wearda T, Marecic O, Hu MS, Paik KJ, Senarath-Yapa K,
et al: Osteoclast derivation from mouse bone marrow. J Vis Exp.
6:e520562014.
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Dempster DW, Compston JE, Drezner MK,
Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR
and Parfitt AM: Standardized nomenclature, symbols, and units for
bone histomorphometry: A 2012 update of the report of the ASBMR
Histomorphometry nomenclature committee. J Bone Miner Res. 28:2–17.
2013. View Article : Google Scholar :
|
25
|
Bjursell MK, Blom HJ, Cayuela JA, Engvall
ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg
M, Jakobs C, et al: Adenosine kinase deficiency disrupts the
methionine cycle and causes hypermethioninemia, encephalopathy, and
abnormal liver function. Am J Hum Genet. 89:507–515. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Albers J, Keller J, Baranowsky A, Beil FT,
Catala-Lehnen P, Schulze J, Amling M and Schinke T: Canonical Wnt
signaling inhibits osteoclastogenesis independent of
osteoprotegerin. J Cell Biol. 200:537–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bartell SM, Kim HN, Ambrogini E, Han L,
Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao
H, et al: FoxO proteins restrain osteoclastogenesis and bone
resorption by attenuating H2O2 accumulation.
Nat Commun. 5:37732014. View Article : Google Scholar
|
29
|
Kim HN, Han L, Iyer S, de Cabo R, Zhao H,
O'Brien CA, Manolagas SC and Almeida M: Sirtuin1 suppresses
osteoclastogenesis by deacetylating FoxOs. Mol Endocrinol.
29:1498–1509. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun W, Zhao C, Li Y, Wang L, Nie G, Peng
J, Wang A, Zhang P, Tian W, Li Q, et al: Osteoclast-derived
microRNA-containing exosomes selectively inhibit osteoblast
activity. Cell Discov. 2:160152016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Young JD, Yao SY, Sun L, Cass CE and
Baldwin SA: Human equilibrative nucleoside transporter (ENT) family
of nucleoside and nucleobase transporter proteins. Xenobiotica.
38:995–1021. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kara FM, Chitu V, Sloane J, Axelrod M,
Fredholm BB, Stanley ER and Cronstein BN: Adenosine A1 receptors
(A1Rs) play a critical role in osteoclast formation and function.
FASEB J. 24:2325–2333. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kara FM, Doty SB, Boskey A, Goldring S,
Zaidi M, Fredholm BB and Cronstein BN: Adenosine A(1) receptors
regulate bone resorption in mice: Adenosine A(1) receptor blockade
or deletion increases bone density and prevents ovariectomy-induced
bone loss in adenosine A(1) receptor-knockout mice. Arthritis
Rheum. 62:534–541. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Carroll SH, Wigner NA, Kulkarni N,
Johnston-Cox H, Gerstenfeld LC and Ravid K: A2B adenosine receptor
promotes mesenchymal stem cell differentiation to osteoblasts and
bone formation in vivo. J Biol Chem. 287:15718–15727. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Gharibi B, Abraham AA, Ham J and Evans BA:
Adenosine receptor subtype expression and activation influence the
differentiation of mesenchymal stem cells to osteoblasts and
adipocytes. J Bone Miner Res. 26:2112–2124. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hinton DJ, McGee-Lawrence ME, Lee MR,
Kwong HK, Westendorf JJ and Choi DS: Aberrant bone density in aging
mice lacking the adenosine transporter ENT1. PLoS One.
9:e888182014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsuchiya A, Kanno T, Saito M, Miyoshi Y,
Gotoh A, Nakano T and Nishizaki T: Intracellularly transported
adenosine induces apoptosis in (corrected) MCF-7 human breast
cancer cells by accumulating AMID in the nucleus. Cancer Lett.
321:65–72. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hiken JF and Steinberg TH: ATP
downregulates P2X7 and inhibits osteoclast formation in RAW cells.
Am J Physiol Cell Physiol. 287:C403–C412. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Paschou SA, Dede AD, Anagnostis PG,
Vryonidou A, Morganstein D and Goulis DG: Type 2 diabetes and
osteoporosis: A guide to optimal management. J Clin Endocrinol
Metab. 102:3621–3634. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hegazy SK: Evaluation of the
anti-osteoporotic effects of metformin and sitagliptin in
postmenopausal diabetic women. J Bone Miner Metab. 33:207–212.
2015. View Article : Google Scholar
|
41
|
Montagnani A, Gonnelli S, Alessandri M and
Nuti R: Osteoporosis and risk of fracture in patients with
diabetes: An update. Aging Clin Exp Res. 23:84–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ,
Lee SH, Lee KU, Kim GS, Kim SW and Koh JM: AMP kinase acts as a
negative regulator of RANKL in the differentiation of osteoclasts.
Bone. 47:926–937. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP,
Zhao L, Jia CH, Wen ZH, Jin DD and Bai XC: Metformin stimulates
osteoprotegerin and reduces RANKL expression in osteoblasts and
ovariectomized rats. J Cell Biochem. 112:2902–2909. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
McCarthy AD, Cortizo AM and Sedlinsky C:
Metformin revisited: Does this regulator of AMP-activated protein
kinase secondarily affect bone metabolism and prevent diabetic
osteopathy. World J Diabetes. 7:122–133. 2016. View Article : Google Scholar : PubMed/NCBI
|