Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review)
- Authors:
- Ji‑Dong Guo
- Xin Zhao
- Yang Li
- Guang‑Ren Li
- Xiao‑Liang Liu
-
Affiliations: Department of Neurology, The First Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China, Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: January 19, 2018 https://doi.org/10.3892/ijmm.2018.3406
- Pages: 1817-1825
This article is mentioned in:
Abstract
Sulzer D and Surmeier DJ: Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord. 28:715–724. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shukla V, Mishra SK and Pant HC: Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011:5726342011.PubMed/NCBI | |
Kim GH, Kim JE, Rhie SJ and Yoon S: The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 24:325–340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jenner P: Oxidative stress in Parkinson's disease. Ann Neurol. 53(Suppl 3): S26–S38. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER and Mizuno Y: Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA. 93:2696–2701. 1996. View Article : Google Scholar : PubMed/NCBI | |
Floor E and Wetzel MG: Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenyl-hydrazine assay. J Neurochem. 70:268–275. 1998. View Article : Google Scholar : PubMed/NCBI | |
Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P and Halliwell B: Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 69:1196–1203. 1997. View Article : Google Scholar : PubMed/NCBI | |
Isobe C, Abe T and Terayama Y: Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson's disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett. 469:159–163. 2010. View Article : Google Scholar | |
Callio J, Oury TD and Chu CT: Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem. 280:18536–18542. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perier C, Bové J, Vila M and Przedborski S: The rotenone model of Parkinson's disease. Trends Neurosci. 26:345–346. 2003. View Article : Google Scholar : PubMed/NCBI | |
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM and Kopin IJ: A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA. 80:4546–4550. 1983. View Article : Google Scholar : PubMed/NCBI | |
Bhandary B, Marahatta A, Kim HR and Chae HJ: An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci. 14:434–456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN and Radi E: Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 322:254–262. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sanders LH and Greenamyre JT: Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med. 62:111–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peterson LJ and Flood PM: Oxidative stress and microglial cells in Parkinson's disease. Mediators Inflamm. 2012:4012642012. View Article : Google Scholar : PubMed/NCBI | |
Fischer R and Maier O: Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015:6108132015. View Article : Google Scholar : PubMed/NCBI | |
Andreyev AY, Kushnareva YE and Starkov AA: Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 70:200–214. 2005. View Article : Google Scholar | |
Cadenas E and Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rush JD and Koppenol WH: Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 261:6730–6733. 1986.PubMed/NCBI | |
Gutteridge JM: Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: An evaluation of fourteen iron chelators. Free Radic Res Commun. 9:119–125. 1990. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam SR and Chesselet MF: Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol. 106–107:17–32. 2013. View Article : Google Scholar | |
Langston JW, Ballard P, Tetrud JW and Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 219:979–980. 1983. View Article : Google Scholar : PubMed/NCBI | |
Chiba K, Trevor A and Castagnoli N Jr: Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun. 120:574–578. 1984. View Article : Google Scholar : PubMed/NCBI | |
Javitch JA, D'Amato RJ, Strittmatter SM and Snyder SH: Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: Uptake of the met abolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA. 82:2173–2177. 1985. View Article : Google Scholar | |
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P and Marsden CD: Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem. 54:823–827. 1990. View Article : Google Scholar : PubMed/NCBI | |
Hattori N, Tanaka M, Ozawa T and Mizuno Y: Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson's disease. Ann Neurol. 30:563–571. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T and Kagawa Y: Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun. 163:1450–1455. 1989. View Article : Google Scholar : PubMed/NCBI | |
Parker WD Jr, Parks JK and Swerdlow RH: Complex I deficiency in Parkinson's disease frontal cortex. Brain Res. 1189:215–218. 2008. View Article : Google Scholar | |
Krige D, Carroll MT, Cooper JM, Marsden CD and Schapira AH; The Royal Kings and Queens Parkinson Disease Research Group: Platelet mitochondrial function in Parkinson's disease. Ann Neurol. 32:782–788. 1992. View Article : Google Scholar : PubMed/NCBI | |
Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R and Shults CW: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol. 37:714–722. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mytilineou C, Werner P, Molinari S, Di Rocco A, Cohen G and Yahr MD: Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson's disease. J Neural Transm Park Dis Dement Sect. 8:223–228. 1994. View Article : Google Scholar : PubMed/NCBI | |
Blin O, Desnuelle C, Rascol O, Borg M, Peyro Saint Paul H, Azulay JP, Billé F, Figarella D, Coulom F, Pellissier JF, et al: Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J Neurol Sci. 125:95–101. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yoshino H, Nakagawa-Hattori Y, Kondo T and Mizuno Y: Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson's disease. J Neural Transm Park Dis Dement Sect. 4:27–34. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA, et al: Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem. 286:16504–16515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kudin AP, Debska-Vielhaber G and Kunz WS: Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother. 59:163–168. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE and Kunz WS: Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem. 279:4127–4135. 2004. View Article : Google Scholar | |
Kussmaul L and Hirst J: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA. 103:7607–7612. 2006. View Article : Google Scholar : PubMed/NCBI | |
Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA and Ugalde C: Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radic Biol Med. 53:595–609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dias V, Junn E and Mouradian MM: The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 3:461–491. 2013.PubMed/NCBI | |
Morató L, Bertini E, Verrigni D, Ardissone A, Ruiz M, Ferrer I, Uziel G and Pujol A: Mitochondrial dysfunction in central nervous system white matter disorders. Glia. 62:1878–1894. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sian-Hülsmann J, Mandel S, Youdim MB and Riederer P: The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem. 118:939–957. 2011. View Article : Google Scholar | |
Kosta P, Argyropoulou MI, Markoula S and Konitsiotis S: MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease. J Neurol. 253:26–32. 2006. View Article : Google Scholar | |
Sziráki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ and Chiueh CC: Manganese: A transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience. 85:1101–1111. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lan J and Jiang DH: Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm Vienna. 104:469–481. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ruipérez V, Darios F and Davletov B: Alpha-synuclein, lipids and Parkinson's disease. Prog Lipid Res. 49:420–428. 2010. View Article : Google Scholar | |
Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P and Marsden CD: Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem. 52:381–389. 1989. View Article : Google Scholar : PubMed/NCBI | |
Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P and Marsden CD: Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study. Mov Disord. 9:92–97. 1994. View Article : Google Scholar : PubMed/NCBI | |
Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ II, Morrow JD and Montine TJ: Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. 128:117–124. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Kato M, Akhand AA, Hayakawa A, Suzuki H, Miyata T, Kurokawa K, Hotta Y, Ishikawa N and Nakashima I: 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci. 113:635–641. 2000.PubMed/NCBI | |
Schmidt H, Grune T, Müller R, Siems WG and Wauer RR: Increased levels of lipid peroxidation products malondialdehyde and 4-hydroxynonenal after perinatal hypoxia. Pediatr Res. 40:15–20. 1996. View Article : Google Scholar : PubMed/NCBI | |
Starkov AA: The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 1147:37–52. 2008. View Article : Google Scholar : PubMed/NCBI | |
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar | |
Camara AK, Lesnefsky EJ and Stowe DF: Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal. 13:279–347. 2010. View Article : Google Scholar : | |
Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI | |
Levy RJ and Deutschman CS: Deficient mitochondrial biogenesis in critical illness: Cause, effect, or epiphenomenon. Crit Care. 11:1582007. View Article : Google Scholar | |
Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW and Khrapko K: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 38:518–520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, et al: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 38:515–517. 2006. View Article : Google Scholar : PubMed/NCBI | |
Elstner M, Müller SK, Leidolt L, Laub C, Krieg L, Schlaudraff F, Liss B, Morris C, Turnbull DM, Masliah E, et al: Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions. Mol Brain. 4:432011. View Article : Google Scholar : PubMed/NCBI | |
Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, et al: Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA. 104:1325–1330. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, et al: Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 119:866–872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi A, Kim B and Matsuoka S: The destiny of Ca(2+) released by mitochondria. J Physiol Sci. 65:11–24. 2015. View Article : Google Scholar | |
Jo H, Noma A and Matsuoka S: Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes. J Mol Cell Cardiol. 40:394–404. 2006. View Article : Google Scholar : PubMed/NCBI | |
Satrústegui J, Pardo B and Del Arco A: Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev. 87:29–67. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kirichok Y, Krapivinsky G and Clapham DE: The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 427:360–364. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alderton WK, Cooper CE and Knowles RG: Nitric oxide synthases: Structure, function and inhibition. Biochem J. 357:593–615. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jekabsone A, Ivanoviene L, Brown GC and Borutaite V: Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol. 35:803–809. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, et al: INK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 33:627–638. 2009. View Article : Google Scholar : PubMed/NCBI | |
Surmeier DJ, Guzman JN, Sanchez-Padilla J and Goldberg JA: The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal. 14:1289–1301. 2011. View Article : Google Scholar : | |
Muravchick S and Levy RJ: Clinical implications of mitochondrial dysfunction. Anesthesiology. 105:819–837. 2006. View Article : Google Scholar : PubMed/NCBI | |
O'Rourke B: Pathophysiological and protective roles of mitochondrial ion channels. J Physiol. 529:23–36. 2000. View Article : Google Scholar : PubMed/NCBI | |
Di Lisa F and Bernardi P: A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol. 46:775–780. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones SP, Teshima Y, Akao M and Marbán E: Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res. 93:697–699. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vila M and Przedborski S: Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci. 4:365–375. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perier C, Tieu K, Guégan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S and Vila M: Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA. 102:19126–19131. 2005. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP and Brenner C: The adenine nucleotide trans-locase: A central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 10:1507–1525. 2003. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science. 281:1322–1326. 1998. View Article : Google Scholar : PubMed/NCBI | |
Theruvath TP, Snoddy MC, Zhong Z and Lemasters JJ: Mitochondrial permeability transition in liver ischemia and reperfusion: Role of c-Jun N-terminal kinase 2. Transplantation. 85:1500–1504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Theruvath TP, Zhong Z, Pediaditakis P, Ramshesh VK, Currin RT, Tikunov A, Holmuhamedov E and Lemasters JJ: Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition. Hepatology. 47:236–246. 2008. View Article : Google Scholar | |
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex Initiates an apoptotic protease cascade. Cell. 91:479–489. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Kim CN, Yang J, Jemmerson R and Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell. 86:147–157. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kim GT, Chun YS, Park JW and Kim MS: Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun. 309:619–624. 2003. View Article : Google Scholar : PubMed/NCBI | |
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, et al: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441–446. 1999. View Article : Google Scholar : PubMed/NCBI | |
Candé C, Cecconi F, Dessen P and Kroemer G: Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathways of cell death? J Cell Sci. 115:4727–4734. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martin LJ: Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci. 107:355–415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obame FN, Plin-Mercier C, Assaly R, Zini R, Dubois-Randé JL, Berdeaux A and Morin D: Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrro le-2,5-dione], via inhibition of the mitochondrial permeability transition pore. J Pharmacol Exp Ther. 326:252–258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y and Shimamoto K: Modulation of the mitochondrial permeability transition pore complex In GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 43:564–570. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jope RS and Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kockeritz L, Doble B, Patel S and Woodgett JR: Glycogen synthase kinase-3 - an overview of an over-achieving protein kinase. Curr Drug Targets. 7:1377–1388. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET and Yu Q: Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 65:9012–9020. 2005. View Article : Google Scholar : PubMed/NCBI | |
Watcharasit P, Bijur GN, Song L, Zhu J, Chen X and Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 278:48872–48879. 2003. View Article : Google Scholar : PubMed/NCBI | |
Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, Bouchard RJ, Florez-McClure ML and Heidenreich KA: Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 24:9993–10002. 2004. View Article : Google Scholar : PubMed/NCBI | |
King TD, Clodfelder-Miller B, Barksdale KA and Bijur GN: Unregulated mitochondrial GSK3beta activity results in NADH: Ubiquinone oxidoreductase deficiency. Neurotox Res. 14:367–382. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Yang Y, Ying C, Li W, Ruan H, Zhu X, You Y, Han Y, Chen R, Wang Y, et al: Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology. 52:1678–1684. 2007. View Article : Google Scholar : PubMed/NCBI | |
King TD, Bijur GN and Jope RS: Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res. 919:106–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Petit-Paitel A, Brau F, Cazareth J and Chabry J: Involvement of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One. 4:e54912009. View Article : Google Scholar | |
Youdim MB and Ar raf Z: Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: Involvements of Bcl-2 and Bax. Neuropharmacology. 46:1130–1140. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li DW, Liu ZQ, Chen W, Yao M and Li GR: Association of glycogen synthase kinase-3β with Parkinson's disease (Review). Mol Med Rep. 9:2043–2050. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spencer JP, Vafeiadou K, Williams RJ and Vauzour D: Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol Aspects Med. 33:83–97. 2012. View Article : Google Scholar | |
Pimplikar SW: Neuroinflammation in Alzheimer's disease: From pathogenesis to a therapeutic target. J Clin Immunol. 34(Suppl 1): S64–S69. 2014. View Article : Google Scholar : PubMed/NCBI | |
Möller T: Neuroinflammation in Huntington's disease. J Neural Transm Vienna. 117:1001–1008. 2010. View Article : Google Scholar : PubMed/NCBI | |
Frohman EM, Racke MK and Raine CS: Multiple sclerosis - the plaque and its pathogenesis. N Engl J Med. 354:942–955. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hirsch EC, Vyas S and Hunot S: Neuroinflammation in Parkinson's disease. Parkinsonism Relat Disord. 18(Suppl 1): S210–S212. 2012. View Article : Google Scholar | |
Zhang F and Jiang L: Neuroinflammation in Alzheimer's disease. Neuropsychiatr Dis Treat. 11:243–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Block ML, Zecca L and Hong JS: Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci. 8:57–69. 2007. View Article : Google Scholar | |
Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S and Michotte Y: The dual role of the neuroinflammatory response after ischemic stroke: Modulatory effects of hypothermia. J Neuroinflammation. 7:742010. View Article : Google Scholar : PubMed/NCBI | |
Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH and Mallat M: Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 28:12039–12051. 2008. View Article : Google Scholar : PubMed/NCBI | |
McGeer PL and McGeer EG: Glial reactions in Parkinson's disease. Mov Disord. 23:474–483. 2008. View Article : Google Scholar | |
Frankola KA, Greig NH, Luo W and Tweedie D: Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets. 10:391–403. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Flood PM and Hong JS: Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. J Neural Transm Vienna. 117:971–979. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debré P, Agid Y, Dugas B and Hirsch EC: FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci. 19:3440–3447. 1999.PubMed/NCBI | |
Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M and Nagatsu T: Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett. 211:13–16. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A and Michel PP: The role of glial reaction and inflammation in Parkinson's disease. Ann NY Acad Sci. 991:214–228. 2003. View Article : Google Scholar : PubMed/NCBI | |
Herrera AJ, Castaño A, Venero JL, Cano J and Machado A: The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 7:429–447. 2000. View Article : Google Scholar : PubMed/NCBI | |
Iravani MM, Leung CC, Sadeghian M, Haddon CO, Rose S and Jenner P: The acute and the long-term effects of nigral lipopoly-saccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci. 22:317–330. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iravani MM, Sadeghian M, Leung CC, Jenner P and Rose S: Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett. 510:138–142. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Członkowski A and Członkowska A: Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology. 39:167–180. 1998. View Article : Google Scholar : PubMed/NCBI | |
Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I and Członkowski A: Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration. 5:137–143. 1996. View Article : Google Scholar | |
Sriram K, Miller DB and O'Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: Role of tumor necrosis factor-alpha. J Neurochem. 96:706–718. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K and Nagatsu T: Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett. 165:208–210. 1994. View Article : Google Scholar : PubMed/NCBI | |
Mir M, Tolosa L, Asensio VJ, Lladó J and Olmos G: Complementary roles of tumor necrosis factor alpha and interferon gamma in inducible microglial nitric oxide generation. J Neuroimmunol. 204:101–109. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lawson LJ, Perry VH, Dri P and Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 39:151–170. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B and Hong JS: Regional difference in susceptibility to lipopolysac-charide-induced neurotoxicity in the rat brain: Role of microglia. J Neurosci. 20:6309–6316. 2000.PubMed/NCBI | |
Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM and Przedborski S: Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 5:1403–1409. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Qian L, Flood PM, Shi JS, Hong JS and Gao HM: Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J Pharmacol Exp Ther. 333:822–833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lofrumento DD, Nicolardi G, Cianciulli A, De Nuccio F, La Pesa V, Carofiglio V, Dragone T, Calvello R and Panaro MA: Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: Possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 20:249–260. 2014. View Article : Google Scholar | |
Gao HM, Zhou H, Zhang F, Wilson BC, Kam W and Hong JS: HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci. 31:1081–1092. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao HM and Hong JS: Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol. 29:357–365. 2008. View Article : Google Scholar : PubMed/NCBI | |
Evans MD, Dizdaroglu M and Cooke MS: Oxidative DNA damage and disease: Induction, repair and significance. Mutat Res. 567:1–61. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hegde ML, Gupta VB, Anitha M, Harikrishna T, Shankar SK, Muthane U, Subba Rao K and Jagannatha Rao KS: Studies on genomic DNA topology and stability in brain regions of Parkinson's disease. Arch Biochem Biophys. 449:143–156. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M and Bohr VA: Mitochondrial base excision repair assays. Methods. 51:416–425. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B and Greenamyre JT: Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis. 70:214–223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilson DM III and Barsky D: The major human abasic endo-nuclease: Formation, consequences and repair of abasic lesions in DNA. Mutat Res. 485:283–307. 2001. View Article : Google Scholar : PubMed/NCBI | |
Larsen E, Reite K, Nesse G, Gran C, Seeberg E and Klungland A: Repair and mutagenesis at oxidized DNA lesions in the developing brain of wild-type and Ogg1−/− mice. Oncogene. 25:2425–2432. 2006. View Article : Google Scholar | |
Gencer M, Dasdemir S, Cakmakoglu B, Cetinkaya Y, Varlibas F, Tireli H, Kucukali CI, Ozkok E and Aydin M: DNA repair genes in Parkinson's disease. Genet Test Mol Biomarkers. 16:504–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mailand N, Gibbs-Seymour I and Bekker-Jensen S: Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol. 14:269–282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moldovan GL, Pfander B and Jentsch S: PCNA, the maestro of the replication fork. Cell. 129:665–679. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burkovics P, Hajdú I, Szukacsov V, Unk I and Haracska L: Role of PCNA-dependent stimulation of 3′-phosphodiesterase and 3′-5′ exonuclease activities of human Ape2 in repair of oxidative DNA damage. Nucleic Acids Res. 37:4247–4255. 2009. View Article : Google Scholar : PubMed/NCBI | |
Amoroso A, Concia L, Maggio C, Raynaud C, Bergounioux C, Crespan E, Cella R and Maga G: Oxidative DNA damage bypass in Arabidopsis thaliana requires DNA polymerase λ and proliferating cell nuclear antigen 2. Plant Cell. 23:806–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li DW, Li GR, Zhang BL, Feng JJ and Zhao H: Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson's disease. Int J Mol Med. 37:429–435. 2016. View Article : Google Scholar |