1
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Baccarelli A, Rienstra M and Benjamin EJ:
Cardiovascular epigenetics: Basic concepts and results from animal
and human studies. Circ Cardiovasc Genet. 3:567–573. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Neele AE, Van den Bossche J, Hoeksema MA
and de Winther MP: Epigenetic pathways in macrophages emerge as
novel targets in atherosclerosis. Eur J Pharmacol. 763:79–89. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Rakyan VK, Down TA, Balding DJ and Beck S:
Epigenome-wide association studies for common human diseases. Nat
Rev Genet. 12:529–541. 2011. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Handy DE, Castro R and Loscalzo J:
Epigenetic modifications: Basic mechanisms and role in
cardiovascular disease. Circulation. 123:2145–2156. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tsai PC, Spector TD and Bell JT: Using
epigenome-wide association scans of DNA methylation in age-related
complex human traits. Epigenomics. 4:511–526. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pfeiffer L, Wahl S, Pilling LC, Reischl E,
Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J,
et al: DNA methylation of lipid-related genes affects blood lipid
levels. Circ Cardiovasc Genet. 8:334–342. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rask-Andersen M, Martinsson D, Ahsan M,
Enroth S, Ek WE, Gyllensten U and Johansson Å: Epigenome-wide
association study reveals differential DNA methylation in
individuals with a history of myocardial infarction. Hum Mol Genet.
25:4739–4748. 2016.
|
9
|
Wahl S, Drong A, Lehne B, Loh M, Scott WR,
Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, et al: Epigenome-wide
association study of body mass index, and the adverse outcomes of
adiposity. Nature. 541:81–86. 2017. View Article : Google Scholar :
|
10
|
Li J, Zhu X, Yu K, Jiang H, Zhang Y, Deng
S, Cheng L, Liu X, Zhong J, Zhang X, et al: Genome-wide analysis of
DNA methylation and acute coronary syndrome. Circ Res.
120:1754–1767. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fernández-Sanlés A, Sayols-Baixeras S,
Subirana I, Degano IR and Elosua R: Association between DNA
methylation and coronary heart disease or other atherosclerotic
events: A systematic review. Atherosclerosis. 263:325–333. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Khyzha N, Alizada A, Wilson MD and Fish
JE: Epigenetics of atherosclerosis: Emerging mechanisms and
methods. Trends Mol Med. 23:332–347. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Deaton AM and Bird A: CpG islands and the
regulation of transcription. Genes Dev. 25:1010–1022. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Nazarenko MS, Puzyreva VP, Lebedev IN,
Frolov AV, Barbarash OL and Barbarash LS: Methylation profiling of
DNA in the area of atherosclerotic plaque in humans. Mol Biol.
45:5612011. View Article : Google Scholar
|
15
|
Zaina S, Heyn H, Carmona FJ, Varol N,
Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gonçalves I, Moran S
and Esteller M: DNA methylation map of human atherosclerosis. Circ
Cardiovasc Genet. 7:692–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Aavik E, Lumivuori H, Leppänen O, Wirth T,
Häkkinen SK, Bräsen JH, Beschorner U, Zeller T, Braspenning M, van
Criekinge W, et al: Global DNA methylation analysis of human
atherosclerotic plaques reveals extensive genomic hypomethylation
and reactivation at imprinted locus 14q32 involving induction of a
miRNA cluster. Eur Heart J. 36:993–1000. 2015. View Article : Google Scholar
|
17
|
Kucher AN, Nazarenko MS, Markov AV,
Koroleva IA and Barbarash OL: Variability of methylation profiles
of CpG sites in microRNA genes in leukocytes and vascular tissues
of patients with atherosclerosis. Biochemistry. 82:698–706.
2017.PubMed/NCBI
|
18
|
Castillo-Díaz SA, Garay-Sevilla ME,
Hernández-González MA, Solís-Martínez MO and Zaina S: Extensive
demethylation of normally hypermethylated CpG islands occurs in
human atherosclerotic arteries. Int J Mol Med. 26:691–700.
2010.PubMed/NCBI
|
19
|
Yamada Y, Nishida T, Horibe H, Oguri M,
Kato K and Sawabe M: Identification of hypo- and hypermethylated
genes related to atherosclerosis by a genome-wide analysis of DNA
methylation. Int J Mol Med. 33:1355–1363. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Moran S, Arribas C and Esteller M:
Validation of a DNA meth-ylation microarray for 850,000 CpG sites
of the human genome enriched in enhancer sequences. Epigenomics.
8:389–399. 2016. View Article : Google Scholar
|
21
|
Christensen BC, Houseman EA, Marsit CJ,
Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF,
Bueno R, et al: Aging and environmental exposures alter
tissue-specific DNA methylation dependent upon CpG island context.
PLoS Genet. 5:e10006022009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bell JT, Pai AA, Pickrell JK, Gaffney DJ,
Pique-Regi R, Degner JF, Gilad Y and Pritchard JK: DNA methylation
patterns associate with genetic and gene expression variation in
HapMap cell lines. Genome Biol. 12:R102011. View Article : Google Scholar : PubMed/NCBI
|
23
|
ENCODE Project Consortium: An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lizio M, Harshbarger J, Shimoji H, Severin
J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F,
Ishikawa-Kato S, et al: Gateways to the FANTOM5 promoter level
mammalian expression atlas. Genome Biol. 16:222015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bibikova M, Barnes B, Tsan C, Ho V,
Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, et
al: High density DNA methylation array with single CpG site
resolution. Genomics. 98:288–295. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Libby P: Inflammation in atherosclerosis.
Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Libby P: Mechanisms of acute coronary
syndromes and their implications for therapy. N Engl J Med.
368:2004–2013. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Turunen MP, Aavik E and Ylä-Herttuala S:
Epigenetics and atherosclerosis. Biochim Biophys Acta.
1790:886–891. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hai Z and Zuo W: Aberrant DNA methylation
in the pathogenesis of atherosclerosis. Clin Chim Acta. 456:69–74.
2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fishbein GA and Fishbein MC:
Arteriosclerosis: Rethinking the current classification. Arch
Pathol Lab Med. 133:1309–1316. 2009.PubMed/NCBI
|
31
|
Peng Y, Meng K, Jiang L, Zhong Y, Yang Y,
Lan Y, Zeng Q and Cheng L: Thymic stromal lymphopoietin-induced
HOTAIR activation promotes endothelial cell proliferation and
migration in atherosclerosis. Biosci Rep. 37:pii: BSR201703512017.
View Article : Google Scholar
|
32
|
Shen T, Zhu Y, Patel J, Ruan Y, Chen B,
Zhao G, Cao Y, Pang J, Guo H, Li H, et al: T-box20 suppresses
oxidized low-density lipoprotein-induced human vascular endothelial
cell injury by upregulation of PPAR-γ. Cell Physiol Biochem.
32:1137–1150. 2013. View Article : Google Scholar
|
33
|
Warren HR, Evangelou E, Cabrera CP, Gao H,
Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, et al:
Genome-wide association analysis identifies novel blood pressure
loci and offers biological insights into cardiovascular risk. Nat
Genet. 49:403–415. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Graff M, Scott RA, Justice AE, Young KL,
Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, et
al: Genome-wide physical activity interactions in adiposity-a
meta-analysis of 200,452 adults. PLoS Genet. 13:e10065282017.
View Article : Google Scholar
|
35
|
Zhang J, Burridge KA and Friedman MH: In
vivo differences between endothelial transcriptional profiles of
coronary and iliac arteries revealed by microarray analysis. Am J
Physiol Heart Circ Physiol. 295:H1556–H1561. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ellinghaus E, Ellinghaus D, Krusche P,
Greiner A, Schreiber C, Nikolaus S, Gieger C, Strauch K, Lieb W,
Rosenstiel P, et al: Genome-wide association analysis for chronic
venous disease identifies EFEMP1 and KCNH8 as susceptibility loci.
Sci Rep. 7:456522017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Astle WJ, Elding H, Jiang T, Allen D,
Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima
MA, et al: The allelic landscape of human blood cell trait
variation and links to common complex disease. Cell.
167:1415–1429.e19. 2016. View Article : Google Scholar : PubMed/NCBI
|