1
|
Markova N, Slavchev G and Michailova L:
Unique biological properties of Mycobacterium tuberculosis L-form
variants: Impact for survival under stress. Int Microbiol.
15:61–68. 2012.PubMed/NCBI
|
2
|
Markova N, Slavchev G and Michailova L:
Filterable forms and L-forms of Mycobacterium bovis BCG: Impact for
live vaccine features. Hum Vaccin Immunother. 8:759–764. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Michailova L, Kussovski V, Radoucheva T,
Jordanova M, Berger W, Rinder H and Markova N: Morphological
variability and cell-wall deficiency in Mycobacterium tuberculosis
'heteroresistant' strains. Int J Tuberc Lung Dis. 9:907–914.
2005.PubMed/NCBI
|
4
|
Seiler P, Ulrichs T, Bandermann S, Pradl
L, Jörg S, Krenn V, Morawietz L, Kaufmann SH and Aichele P:
Cell-wall alterations as an attribute of Mycobacterium tuberculosis
in latent infection. J Infect Dis. 188:1326–1331. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Koo MS, Subbian S and Kaplan G: Strain
specific transcriptional response in Mycobacterium tuberculosis
infected macrophages. Cell Commun Signal. 10:22012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chakraborty P, Kulkarni S, Rajan R and
Sainis K: Drug resistant clinical isolates of Mycobacterium
tuberculosis from different genotypes exhibit differential host
responses in THP-1 cells. PLoS One. 8:e629662013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Abuhammad A, Fullam E, Lowe ED, Staunton
D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden
PT, et al: Piperidinols that show anti-tubercular activity as
inhibitors of arylamine N-acetyltransferase: An essential enzyme
for mycobacterial survival inside macrophages. PLoS One.
7:e527902012. View Article : Google Scholar
|
8
|
Gautam US, Mehra S, Ahsan MH, Alvarez X,
Niu T and Kaushal D: Role of TNF in the altered interaction of
dormant Mycobacterium tuberculosis with host macrophages. PLoS One.
9:e952202014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bruns H and Stenger S: New insights into
the interaction of Mycobacterium tuberculosis and human
macrophages. Future Microbiol. 9:327–341. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
van Baal JW, Verbeek RE, Bus P, Fassan M,
Souza RF, Rugge M, ten Kate FJ, Vleggaar FP and Siersema PD:
microRNA-145 in Barrett's oesophagus: Regulating BMP4 signalling
via GATA6. Gut. 62:664–675. 2013. View Article : Google Scholar
|
11
|
Mohan M, Chandra LC, Torben W, Aye PP,
Alvarez X and Lackner AA: miR-190b is markedly upregulated in the
intestine in response to simian immunodeficiency virus replication
and partly regulates myotubularin-related protein-6 expression. J
Immunol. 193:1301–1313. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Roux J, Gonzàlez-Porta M and
Robinson-Rechavi M: Comparative analysis of human and mouse
expression data illuminates tissue-specific evolutionary patterns
of miRNAs. Nucleic Acids Res. 40:5890–5900. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu Z, Lu H, Sheng J and Li L: Inductive
microRNA-21 impairs anti-mycobacterial responses by targeting IL-12
and Bcl-2. FEBS Lett. 586:2459–2467. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ma C, Li Y, Li M, Deng G, Wu X, Zeng J,
Hao X, Wang X, Liu J, Cho WC, et al: microRNA-124 negatively
regulates TLR signaling in alveolar macrophages in response to
mycobacterial infection. Mol Immunol. 62:150–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dorhoi A, Iannaccone M, Farinacci M, Faé
KC, Schreiber J, Moura-Alves P, Nouailles G, Mollenkopf HJ,
Oberbeck-Müller D, Jörg S, et al: MicroRNA-223 controls
susceptibility to tuberculosis by regulating lung neutrophil
recruitment. J Clin Invest. 123:4836–4848. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kumar R, Halder P, Sahu SK, Kumar M,
Kumari M, Jana K, Ghosh Z, Sharma P, Kundu M and Basu J:
Identification of a novel role of ESAT-6-dependent miR-155
induction during infection of macrophages with Mycobacterium
tuberculosis. Cell Microbiol. 14:1620–1631. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sutherland JS, Adetifa IM, Hill PC,
Adegbola RA and Ota MO: Pattern and diversity of cytokine
production differentiates between Mycobacterium tuberculosis
infection and disease. Eur J Immunol. 39:723–729. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sharma S and Bose M: Role of cytokines in
immune response to pulmonary tuberculosis. Asian Pac J Allergy
Immunol. 19:213–219. 2001.
|
19
|
Singh PP and Goyal A: Interleukin-6: A
potent biomarker of mycobacterial infection. Springerplus.
2:6862013. View Article : Google Scholar
|
20
|
Swaminathan S, Suzuki K, Seddiki N, Kaplan
W, Cowley MJ, Hood CL, Clancy JL, Murray DD, Méndez C, Gelgor L, et
al: Differential regulation of the Let-7 family of microRNAs in
CD4+ T cells alters IL-10 expression. J Immunol.
188:6238–6246. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang HC, Yu HR, Huang LT, Huang HC, Chen
RF, Lin IC, Ou CY, Hsu TY and Yang KD: miRNA-125b regulates TNF-α
production in CD14+ neonatal monocytes via
post-transcriptional regulation. J Leukoc Biol. 92:171–182. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Sarma NJ, Tiriveedhi V, Crippin JS,
Chapman WC and Mohanakumar T: Hepatitis C virus-induced changes in
microRNA 107 (miRNA-107) and miRNA-449a modulate CCL2 by targeting
the interleukin-6 receptor complex in hepatitis. J Virol.
88:3733–3743. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M,
Hua M, Li N, Yao H and Cao X: The microRNA miR-29 controls innate
and adaptive immune responses to intracellular bacterial infection
by targeting interferon-γ. Nat Immunol. 12:861–869. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Steiner DF, Thomas MF, Hu JK, Yang Z,
Babiarz JE, Allen CD, Matloubian M, Blelloch R and Ansel KM:
MicroRNA-29 regulates T-box transcription factors and interferon-γ
production in helper T cells. Immunity. 35:169–181. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Almenoff PL, Johnson A, Lesser M and
Mattman LH: Growth of acid fast L forms from the blood of patients
with sarcoidosis. Thorax. 51:530–533. 1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen YY, Chang JR, Huang WF, Hsu SC, Kuo
SC, Sun JR and Dou HY: The pattern of cytokine production in vitro
induced by ancient and modern Beijing Mycobacterium tuberculosis
strains. PLoS One. 9:e942962014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Briken V, Ahlbrand SE and Shah S:
Mycobacterium tuberculosis and the host cell inflammasome: A
complex relationship. Front Cell Infect Microbiol. 3:622013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tang S, Cui H, Yao L, Hao X, Shen Y, Fan
L, Sun H, Zhang Z and Huang JA: Increased cytokines response in
patients with tuberculosis complicated with chronic obstructive
pulmonary disease. PLoS One. 8:e623852013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang R, Xi C, Sita DR, Sakai S, Tsuchiya
K, Hara H, Shen Y, Qu H, Fang R, Mitsuyama M, et al: The RD1 locus
in the Mycobacterium tuberculosis genome contributes to the
maturation and secretion of IL-1α from infected macrophages through
the elevation of cytoplasmic calcium levels and calpain activation.
Pathog Dis. 70:51–60. 2014. View Article : Google Scholar
|
30
|
Das S, Banerjee S, Majumder S, Chowdhury
BP, Goswami A, Halder K, Chakraborty U, Pal NK and Majumdar S:
Immune subversion by Mycobacterium tuberculosis through CCR5
mediated signaling: Involvement of IL-10. PLoS One. 9:e924772014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Denis M and Gregg EO: Recombinant tumour
necrosis factor-alpha decreases whereas recombinant interleukin-6
increases growth of a virulent strain of Mycobacterium avium in
human macrophages. Immunology. 71:139–141. 1990.PubMed/NCBI
|
32
|
Cavalcanti YV, Brelaz MC, Neves JK, Ferraz
JC and Pereira VR: Role of TNF-alpha, IFN-gamma, and IL-10 in the
development of pulmonary tuberculosis. Pulm Med. 2012:7454832012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen CZ, Schaffert S, Fragoso R and Loh C:
Regulation of immune responses and tolerance: The microRNA
perspective. Immunol Rev. 253:112–128. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Foster PS, Plank M, Collison A, Tay HL,
Kaiko GE, Li J, Johnston SL, Hansbro PM, Kumar RK, Yang M, et al:
The emerging role of microRNAs in regulating immune and
inflammatory responses in the lung. Immunol Rev. 253:198–215. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
A Hicks J, Yoo D and Liu HC:
Characterization of the microRNAome in porcine reproductive and
respiratory syndrome virus infected macrophages. PLoS One.
8:e820542013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Birkhäuser FD, Koya RC, Neufeld C,
Rampersaud EN, Lu X, Micewicz ED, Chodon T, Atefi M, Kroeger N,
Chandramouli GV, et al: Dendritic cell-based immunotherapy in
prevention and treatment of renal cell carcinoma: Efficacy, safety,
and activity of Ad-GM·CAIX in immunocompetent mouse models. J
Immunother. 36:102–111. 2013. View Article : Google Scholar
|
37
|
Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan
RY and Tu RQ: A ten-microRNA signature identified from a
genome-wide microRNA expression profiling in human epithelial
ovarian cancer. PLoS One. 9:e964722014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J,
Yang Q, Xu Y and Li F: Aberrant expression of microRNAs in gastric
cancer and biological significance of miR-574-3p. Int
Immunopharmacol. 13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kos A, Olde Loohuis NF, Wieczorek ML,
Glennon JC, Martens GJ, Kolk SM and Aschrafi A: A potential
regulatory role for intronic microRNA-338-3p for its host gene
encoding apoptosis-associated tyrosine kinase. PLoS One.
7:e310222012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Summerer I, Niyazi M, Unger K, Pitea A,
Zangen V, Hess J, Atkinson MJ, Belka C, Moertl S and Zitzelsberger
H: Changes in circulating microRNAs after radiochemotherapy in head
and neck cancer patients. Radiat Oncol. 8:2962013. View Article : Google Scholar
|
41
|
Meng QL, Liu F, Yang XY, Liu XM, Zhang X,
Zhang C and Zhang ZD: Identification of latent tuberculosis
infection-related microRNAs in human U937 macrophages expressing
Mycobacterium tuberculosis Hsp16.3. BMC Microbiol. 14:372014.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Fu Y, Yi Z, Li J and Li R: Deregulated
microRNAs in CD4+ T cells from individuals with latent
tuberculosis versus active tuberculosis. J Cell Mol Med.
18:503–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jiang L, Cheng Z, Qiu S, Que Z, Bao W,
Jiang C, Zou F, Liu P and Liu J: Altered let-7 expression in
Myasthenia gravis and let-7c mediated regulation of IL-10 by
directly targeting IL-10 in Jurkat cells. Int Immunopharmacol.
14:217–223. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kleinsteuber K, Heesch K, Schattling S,
Kohns M, Sander-Jülch C, Walzl G, Hesseling A, Mayatepek E,
Fleischer B, Marx FM, et al: Decreased expression of miR-21,
miR-26a, miR-29a, and miR-142-3p in CD4+ T cells and
peripheral blood from tuberculosis patients. PLoS One.
8:e616092013. View Article : Google Scholar
|
45
|
Masood KI, Hussain R, Rao N, Rottenberg
ME, Salahuddin N, Irfan M and Hasan Z: Differential Early Secreted
Antigen Target (ESAT) 6 kDa-induced IFN-γ and SOCS1 expression
distinguishes latent and active tuberculosis. J Infect Dev Ctries.
8:59–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Adetifa IM, Ota MO, Jeffries DJ, Lugos MD,
Hammond AS, Battersby NJ, Owiafe PK, Donkor SD, Antonio M, Ibanga
HB, et al: Interferon-γ ELISPOT as a biomarker of treatment
efficacy in latent tuberculosis infection: A clinical trial. Am J
Respir Crit Care Med. 187:439–445. 2013. View Article : Google Scholar
|