1
|
Nollet M, Santucci-Darmanin S, Breuil V,
Al-Sahlanee R, Cros C, Topi M, Momier D, Samson M, Pagnotta S,
Cailleteau L, et al: Autophagy in osteoblasts is involved in
mineralization and bone homeostasis. Autophagy. 10:1965–1977. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Chan GK and Duque G: Age-related bone
loss: old bone, new facts. Gerontology. 48:62–71. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Homma Y, Zimmermann G and Hernigou P:
Cellular therapies for the treatment of non-union: the past,
present and future. Injury. 44(Suppl 1): S46–S49. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhu Y, Zhou J, Ao R and Yu B: A-769662
protects osteoblasts from hydrogen dioxide-induced apoptosis
through activating of AMP-activated protein kinase (AMPK). Int J
Mol Sci. 15:11190–11203. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Quarles LD, Yohay DA, Lever LW, Caton R
and Wenstrup RJ: Distinct proliferative and differentiated stages
of murine MC3T3-E1 cells in culture: an in vitro model of
osteoblast development. J Bone Miner Res. 7:683–692. 1992.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhong X, Xiu LL, Wei GH, Liu YY, Su L, Cao
XP, Li YB and Xiao HP: Bezafibrate enhances proliferation and
differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS
activation. Acta Pharmacol Sin. 32:591–600. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hardie DG, Hawley SA and Scott JW:
AMP-activated protein kinase - development of the energy sensor
concept. J Physiol. 574:7–15. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shah M, Kola B, Bataveljic A, Arnett TR,
Viollet B, Saxon L, Korbonits M and Chenu C: AMP-activated protein
kinase (AMPK) activation regulates in vitro bone formation and bone
mass. Bone. 47:309–319. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mihaylova MM and Shaw RJ: The AMPK
signalling pathway coordinates cell growth, autophagy and
metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jang WG, Kim EJ, Lee KN, Son HJ and Koh
JT: AMP-activated protein kinase (AMPK) positively regulates
osteoblast differentiation via induction of Dlx5-dependent Runx2
expression in MC3T3E1 cells. Biochem Biophys Res Commun.
404:1004–1009. 2011. View Article : Google Scholar
|
11
|
Kanazawa I, Yamaguchi T, Yano S, Yamauchi
M and Sugimoto T: Activation of AMP kinase and inhibition of Rho
kinase induce the mineralization of osteoblastic MC3T3-E1 cells
through endo-thelial NOS and BMP-2 expression. Am J Physiol
Endocrinol Metab. 296:E139–E146. 2009. View Article : Google Scholar
|
12
|
Pierrefite-Carle V, Santucci-Darmanin S,
Breuil V, Camuzard O and Carle GF: Autophagy in bone: self-eating
to stay in balance. Ageing Res Rev. 24(Pt B): 206–217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Auto-phagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hosokawa N, Sasaki T, Iemura S, Natsume T,
Hara T and Mizushima N: Atg101, a novel mammalian autophagy protein
interacting with Atg13. Autophagy. 5:973–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mercer CA, Kaliappan A and Dennis PB: A
novel, human Atg13 binding protein, Atg101, interacts with ULK1 and
is essential for macroautophagy. Autophagy. 5:649–662. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Glick D, Barth S and Macleod KF:
Autophagy: cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the care and use of laboratory animals. 8th
edition. Washington (DC): National Academies Press (US); 2011
|
18
|
Farso Nielsen F, Karring T and Gogolewski
S: Biodegradable guide for bone regeneration. Polyurethane
membranes tested in rabbit radius defects. Acta Orthop Scand.
63:66–69. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shafiei Z, Bigham AS, Dehghani SN and
Nezhad ST: Fresh cortical autograft versus fresh cortical allograft
effects on experimental bone healing in rabbits: radiological,
histopathological and biomechanical evaluation. Cell Tissue Bank.
10:19–26. 2009. View Article : Google Scholar
|
20
|
Oryan A, Alidadi S and Moshiri A: Current
concerns regarding healing of bone defects. Hard Tissue. 2:132013.
View Article : Google Scholar
|
21
|
Saito T, Asai K, Sato S, Hayashi M, Adachi
A, Sasaki Y, Takano H, Mizuno K and Shimizu W: Autophagic vacuoles
in cardiomyocytes of dilated cardiomyopathy with initially
decompensated heart failure predict improved prognosis. Autophagy.
12:579–587. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Aubin JE, Liu F, Malaval L and Gupta AK:
Osteoblast and chondroblast differentiation. Bone. 17(Suppl 2):
77S–83S. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shapiro F: Bone development and its
relation to fracture repair. The role of mesenchymal osteoblasts
and surface osteoblasts. Eur Cell Mater. 15:53–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Khosla S, Westendorf JJ and Oursler MJ:
Building bone to reverse osteoporosis and repair fractures. J Clin
Invest. 118:421–428. 2008. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Nakashima K and de Crombrugghe B:
Transcriptional mechanisms in osteoblast differentiation and bone
formation. Trends Genet. 19:458–466. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Garrett IR, Gutierrez G and Mundy GR:
Statins and bone formation. Curr Pharm Des. 7:715–736. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kanazawa I, Yamaguchi T, Yano S, Yamauchi
M and Sugimoto T: Metformin enhances the differentiation and
mineralization of osteoblastic MC3T3-E1 cells via AMP kinase
activation as well as eNOS and BMP-2 expression. Biochem Biophys
Res Commun. 375:414–419. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gómez-Barrena E, Rosset P, Lozano D,
Stanovici J, Ermthaller C and Gerbhard F: Bone fracture healing:
cell therapy in delayed unions and nonunions. Bone. 70:93–101.
2015. View Article : Google Scholar
|
30
|
Altner PC, Grana L and Gordon M: An
experimental study on the significance of muscle tissue
interposition on fracture healing. Clin Orthop Relat Res.
111:269–273. 1975. View Article : Google Scholar
|
31
|
Heiple KG and Herndon CH: The pathologic
physiology of nonunion. Clin Orthop Relat Res. 43:11–21. 1965.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hietaniemi K, Peltonen J and Paavolainen
P: An experimental model for non-union in rats. Injury. 26:681–686.
1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sarahrudi K, Mousavi M, Grossschmidt K,
Sela N, König F, Vécsei V and Aharinejad S: Combination of
anorganic bovine-derived hydroxyapatite with binding peptide does
not enhance bone healing in a critical-size defect in a rabbit
model. J Orthop Res. 26:759–763. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tsiridis E, Upadhyay N and Giannoudis P:
Molecular aspects of fracture healing: which are the important
molecules? Injury. 38(Suppl 1): S11–S25. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Harada S and Rodan GA: Control of
osteoblast function and regulation of bone mass. Nature.
423:349–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Steinberg GR and Kemp BE: AMPK in health
and disease. Physiol Rev. 89:1025–1078. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Greer EL, Oskoui PR, Banko MR, Maniar JM,
Gygi MP, Gygi SP and Brunet A: The energy sensor AMP-activated
protein kinase directly regulates the mammalian FOXO3 transcription
factor. J Biol Chem. 282:30107–30119. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang S, Song P and Zou MH: AMP-activated
protein kinase, stress responses and cardiovascular diseases. Clin
Sci (Lond). 122:555–573. 2012. View Article : Google Scholar
|
39
|
King JS, Veltman DM and Insall RH: The
induction of autophagy by mechanical stress. Autophagy.
7:1490–1499. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Klein-Nulend J, Bacabac RG and Bakker AD:
Mechanical loading and how it affects bone cells: the role of the
osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater.
24:278–291. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhao L, Zhao J, Wang S, Wang J and Liu J:
Comparative study between tissue-engineered periosteum and
structural allograft in rabbit critical-sized radial defect model.
J Biomed Mater Res B Appl Biomater. 97:1–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Inoki K, Zhu T and Guan KL: TSC2 mediates
cellular energy response to control cell growth and survival. Cell.
115:577–590. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Egan DF, Shackelford DB, Mihaylova MM,
Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor
R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein
kinase connects energy sensing to mitophagy. Science. 331:456–461.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim J, Kim YC, Fang C, Russell RC, Kim JH,
Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of
distinct Vps34 complexes by AMPK in nutrient stress and autophagy.
Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI
|