1
|
Niccoli T and Partridge L: Ageing as a
risk factor for disease. Current Biol. 22:R741–R752. 2012.
View Article : Google Scholar
|
2
|
Rattan SI: Rationale and methods of
discovering hormetins as drugs for healthy ageing. Expert Opin Drug
Discov. 7:439–448. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schmitt K, Grimm A, Kazmierczak A,
Strosznajder JB, Götz J and Eckert A: Insights into mitochondrial
dysfunction: Aging, amyloid-β, and tau-A deleterious trio. Antioxid
Redox Signal. 16:1456–1466. 2012. View Article : Google Scholar
|
4
|
Biala AK, Dhingra R and Kirshenbaum LA:
Mitochondrial dynamics: Orchestrating the journey to advanced age.
J Mol Cell Cardiol. 83:37–43. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nasrallah CM and Horvath TL: Mitochondrial
dynamics in the central regulation of metabolism. Nat Rev
Endocrinol. 10:650–658. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bullon P, Newman HN and Battino M:
Obesity, diabetes mellitus, atherosclerosis and chronic
periodontitis: A shared pathology via oxidative stress and
mitochondrial dysfunction? Periodontol 2000. 64:139–153. 2014.
View Article : Google Scholar
|
7
|
Schiavi A and Ventura N: The interplay
between mitochondria and autophagy and its role in the aging
process. Expe Gerontol. 56:147–153. 2014. View Article : Google Scholar
|
8
|
Currais A: Ageing and inflammation-A
central role for mitochondria in brain health and disease. Ageing
Res Rev. 21:30–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sorrentino G, Comel A, Mantovani F and Del
Sal G: Regulation of mitochondrial apoptosis by Pin1 in cancer and
neurodegeneration. Mitochondrion. 19:88–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Paradies G, Paradies V, Ruggiero FM and
Petrosillo G: Cardiolipin and mitochondrial function in health and
disease. Antioxid Redox Signal. 20:1925–1953. 2014. View Article : Google Scholar
|
11
|
Palikaras K and Tavernarakis N:
Mitochondrial homeostasis: The interplay between mitophagy and
mitochondrial biogenesis. Exp Gerontol. 56:182–188. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chu CT, Bayır H and Kagan VE: LC3 binds
externalized cardiolipin on injured mitochondria to signal
mitophagy in neurons: Implications for Parkinson disease.
Autophagy. 10:376–378. 2014. View Article : Google Scholar
|
13
|
Youle RJ and Narendra DP: Mechanisms of
mitophagy. Nat Rev Mol Cell Biol. 12:9–14. 2011. View Article : Google Scholar
|
14
|
Thomas RL and Gustafsson AB: Mitochondrial
autophagy: An essential quality control mechanism for myocardial
homeostasis. Circ J. 77:2449–2454. 2013. View Article : Google Scholar
|
15
|
Moyzis AG, Sadoshima J and Gustafsson AB:
Mending a broken heart: The role of mitophagy in cardioprotection.
Am J Physiol Heart and Circ Physiol. 308:H183–H192. 2015.
View Article : Google Scholar
|
16
|
Houtkooper RH, Pirinen E and Auwerx J:
Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol
Cell Biol. 13:225–238. 2012. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Lee IH, Yun J and Finkel T: The emerging
links between sirtuins and autophagy. Methods Mol Biol.
1077:259–271. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong
Q, Fu B, Wang J, Chen X and Cai G: SIRT3 overexpression antagonizes
high glucose accelerated cellular senescence in human diploid
fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr).
35:2237–2253. 2013. View Article : Google Scholar
|
19
|
Ahn BH, Kim HS, Song S, Lee IH, Liu J,
Vassilopoulos A, Deng CX and Finkel T: A role for the mitochondrial
deacetylase Sirt3 in regulating energy homeostasis. Proc Nat Acad
Sci USA. 105:14447–14452. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jing E, Emanuelli B, Hirschey MD, Boucher
J, Lee KY, Lombard D, Verdin EM and Kahn CR: Sirtuin-3 (Sirt3)
regulates skeletal muscle metabolism and insulin signaling via
altered mitochondrial oxidation and reactive oxygen species
production. Proc Nat Acad Sci. 108:14608–14613. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Haigis MC, Deng CX, Finley LW, Kim HS and
Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific
tale that connects aberrant cellular ROS, the Warburg effect, and
carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Alhazzazi TY, Kamarajan P, Verdin E and
Kapila YL: SIRT3 and cancer: Tumor promoter or suppressor? Biochim
Biophys Acta. 1816:80–88. 2011.PubMed/NCBI
|
23
|
Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ
and Camara AK: Inhibited mitochondrial respiration by amobarbital
during cardiac ischaemia improves redox state and reduces matrix
Ca2+ overload and ROS release. Cardiovasc Res.
77:406–415. 2008.
|
24
|
Sundaresan NR, Gupta M, Kim G, Rajamohan
SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic
response by augmenting Foxo3a-dependent antioxidant defense
mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI
|
25
|
Chen CJ, Fu YC, Yu W and Wang W: SIRT3
protects cardiomyocytes from oxidative stress-mediated cell death
by activating NF-κB. Biochem Biophys Res Commun. 430:798–803. 2013.
View Article : Google Scholar
|
26
|
Sack MN: Emerging characterization of the
role of SIRT3-mediated mitochondrial protein deacetylation in the
heart. Am J Physiol-Heart Circ Physiol. 301:H2191–H2197. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Garber JC, Barbee RW, Bielitzki JT,
Clayton L, Donovan J, Hendriksen C, Kohn DF, Lipman NS, Locke PA,
Melcher J, et al: Guide for the care and use of laboratory animals.
Washington DC: The National Academic Press; pp. 2202011
|
28
|
Jiang HK, Miao Y, Wang YH, Zhao M, Feng
ZH, Yu XJ, Liu JK and Zang WJ: Aerobic interval training protects
against myocardial infarction-induced oxidative injury by enhancing
antioxidase system and mitochondrial biosynthesis. Clin Exp
Pharmacol Physiol. 41:192–201. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Merksamer PI, Liu Y, He W, Hirschey MD,
Chen D and Verdin E: The sirtuins, oxidative stress and aging: An
emerging link. Aging (Albany NY). 5:144–150. 2013. View Article : Google Scholar
|
30
|
Adamovich Y, Shlomai A, Tsvetkov P,
Umansky KB, Reuven N, Estall JL, Spiegelman BM and Shaul Y: The
protein level of PGC-1α, a key metabolic regulator, is controlled
by NADH-NQO1. Mol Cell Biol. 33:2603–2613. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rufini A, Tucci P, Celardo I and Melino G:
Senescence and aging: The critical roles of p53. Oncogene.
32:5129–5143. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hoshino A, Matoba S, Iwai-Kanai E,
Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M,
Mita Y, et al: p53-TIGAR axis attenuates mitophagy to exacerbate
cardiac damage after ischemia. J Mole Cell Cardiol. 52:175–184.
2012. View Article : Google Scholar
|
33
|
Saito T and Sadoshima J: Molecular
mechanisms of mitochondrial Autophagy/mitophagy in the heart. Circ
Res. 116:1477–1490. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Herman AM and Moussa CE: The ubiquitin
ligase parkin modulates the execution of autophagy. Autophagy.
7:919–921. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hoshino A, Mita Y, Okawa Y, Ariyoshi M,
Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T and Matoba S: Cytosolic
p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial
dysfunction in the mouse heart. Nat Commun. 4:23082013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sadoshima J: Sirt3 targets mPTP and
prevents aging in the heart. Aging. 3:12–13. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sack MN: The role of SIRT3 in
mitochondrial homeostasis and cardiac adaptation to hypertrophy and
aging. J Mol Cell Cardiol. 52:520–525. 2012. View Article : Google Scholar :
|
38
|
Samant S, Pillai V, Wolfgeher D and Gupta
M: SIRT3 protects cardiomyocytes from Doxorubicin-induced
mitochondrial damage and Cell-death by Activating Opa1.
Circulation. 130(Suppl 2): A146642014.
|
39
|
Cheung KG, Cole LK, Xiang B, Chen K, Ma X,
Myal Y, Hatch GM, Tong Q and Dolinsky VW: Sirtuin-3 (SIRT3) protein
attenuates Doxorubicin-induced Oxidative Stress and improves
mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem.
290:10981–10993. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim SC, Sprung R, Chen Y, Xu Y, Ball H,
Pei J, Cheng T, Kho Y, Xiao H, Xiao L, et al: Substrate and
functional diversity of lysine acetylation revealed by a proteomics
survey. Mol Cell. 23:607–618. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sol EM, Wagner SA, Weinert BT, Kumar A,
Kim HS, Deng CX and Choudhary C: Proteomic investigations of lysine
acetylation identify diverse substrates of mitochondrial
deacetylase sirt3. PLoS One. 7:e505452012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kawamura Y, Uchijima Y, Horike N, Tonami
K, Nishiyama K, Amano T, Asano T, Kurihara Y and Kurihara H: Sirt3
protects in vitro-fertilized mouse preimplantation embryos against
oxidative stress-induced p53-mediated developmental arrest. J Clin
Invest. 120:2817–2828. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
James AM, Collins Y, Logan A and Murphy
MP: Mitochondrial oxidative stress and the metabolic syndrome.
Trend Endocrinol Metab. 23:429–434. 2012. View Article : Google Scholar
|
44
|
Hosseinzadeh S, Dabidi Roshan V and
Pourasghar M: Effects of intermittent aerobic training on passive
avoidance test (shuttle box) and stress markers in the dorsal
hippocampus of wistar rats exposed to administration of
homocysteine. Iran J Psychiatry Behav Sci. 7:37–44. 2013.
|
45
|
Cardoso AM, Bagatini MD, Roth MA, Martins
CC, Rezer JF, Mello FF, Lopes LF, Morsch VM and Schetinger MR:
Acute effects of resistance exercise and intermittent intense
aerobic exercise on blood cell count and oxidative stress in
trained middle-aged women. Braz J Med Biol Res. 45:1172–1182. 2012.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Tanaka M, Sugawara M, Ogasawara Y, Izumi
T, Niki K and Kajiya F: Intermittent, moderate-intensity aerobic
exercise for only eight weeks reduces arterial stiffness:
Evaluation by measurement of stiffness parameter and
pressure-strain elastic modulus by use of ultrasonic echo tracking.
J Med Ultrason (2001). 40:119–124. 2013. View Article : Google Scholar
|
47
|
Narendra D, Tanaka A, Suen DF and Youle
RJ: Parkin is recruited selectively to impaired mitochondria and
promotes their autophagy. J Cell Biol. 183:795–803. 2008.
View Article : Google Scholar : PubMed/NCBI
|