1
|
Pihlstrom BL, Michalowicz BS and Johnson
NW: Periodontal diseases. Lancet. 366:1809–1820. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pounder NM and Harrison AJ: Low intensity
pulsed ultrasound for fracture healing: A review of the clinical
evidence and the associated biological mechanism of action.
Ultrasonics. 48:330–338. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Malizos KN, Hantes ME, Protopappas V and
Papachristos A: Low-intensity pulsed ultrasound for bone healing:
An overview. Injury. 37(Suppl 1): S56–S62. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pilla AA, Mont MA, Nasser PR, Khan SA,
Figueiredo M, Kaufman JJ and Siffert RS: Non-invasive low-intensity
pulsed ultrasound accelerates bone healing in the rabbit. J Orthop
Trauma. 4:246–253. 1990. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cheung WH, Chin WC, Wei FY, Li G and Leung
KS: Applications of exogenous mesenchymal stem cells and low
intensity pulsed ultrasound enhance fracture healing in rat model.
Ultrasound Med Biol. 39:117–125. 2013. View Article : Google Scholar
|
6
|
Ikai H, Tamura T, Watanabe T, Itou M,
Sugaya A, Iwabuchi S, Mikuni-Takagaki Y and Deguchi S:
Low-intensity pulsed ultrasound accelerates periodontal wound
healing after flap surgery. J Periodontal Res. 43:212–216. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
El-Bialy T, Alhadlaq A and Lam B: Effect
of therapeutic ultrasound on human periodontal ligament cells for
dental and periodontal tissue engineering. Open Dent J. 6:235–239.
2012. View Article : Google Scholar
|
8
|
Kusuyama J, Nakamura T, Ohnishi T, Eiraku
N, Noguchi K and Matsuguchi T: Low-intensity pulsed ultrasound
(LIPUS) promotes BMP9-induced osteogenesis and suppresses
inflammatory responses in human periodontal ligament-derived stem
cells. J Orthop Trauma. 31:S42017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhuang D, Ji Z, Bi L, Wang X, Zhou Q and
Cao W: Low-intensity ultrasound combined with hematoporphyrin
monomethyl ether in the treatment of experimental periodontitis in
rats. Biomed Res Int. 2016:71567162016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang Y, Chai Z, Zhang Y, Deng F, Wang Z
and Song J: Influence of low-intensity pulsed ultrasound on
osteogenic tissue regeneration in a periodontal injury model: X-ray
image alterations assessed by micro-computed tomography.
Ultrasonics. 54:1581–1584. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gu XQ, Li YM, Guo J, Zhang LH, Li D and
Gai XD: Effect of low intensity pulsed ultrasound on repairing the
periodontal bone of Beagle canines. Asian Pac J Trop Med.
7:325–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheng G, Tse J, Jain RK and Munn LL:
Micro-environmental mechanical stress controls tumor spheroid size
and morphology by suppressing proliferation and inducing apoptosis
in cancer cells. PloS One. 4:e46322009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Salgarella AR, Cafarelli A, Ricotti L,
Capineri L, Dario P and Menciassi A: Optimal ultrasound exposure
conditions for maximizing C2C12 muscle cell proliferation and
differentiation. Ultrasound Med Biol. 43:1452–1465. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Altman GH, Horan RL, Martin I, Farhadi J,
Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G and Kaplan DL:
Cell differentiation by mechanical stress. FASEB J. 16:270–272.
2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li C, Wernig F, Leitges M, Hu Y and Xu Q:
Mechanical stress-activated PKCdelta regulates smooth muscle cell
migration. FASEB J. 17:2106–2108. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jang KW, Ding L, Seol D, Lim TH,
Buckwalter JA and Martin JA: Low-intensity pulsed ultrasound
promotes chondrogenic progenitor cell migration via focal adhesion
kinase pathway. Ultrasound Med Biol. 40:1177–1186. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Padilla F, Puts R, Vico L and Raum K:
Stimulation of bone repair with ultrasound: A review of the
possible mechanic effects. Ultrasonics. 54:1125–1145. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gould TR, Melcher AH and Brunette DM:
Migration and division of progenitor cell populations in
periodontal ligament after wounding. J Periodontal Res. 15:20–42.
1980. View Article : Google Scholar : PubMed/NCBI
|
19
|
Peled A, Petit I, Kollet O, Magid M,
Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, et al:
Dependence of human stem cell engraftment and repopulation of
NOD/SCID mice on CXCR4. Science. 283:845–848. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Askari AT, Unzek S, Popovic ZB, Goldman
CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD,
DiCorleto PE, et al: Effect of stromal-cell-derived factor 1 on
stem-cell homing and tissue regeneration in ischaemic
cardiomyopathy. Lancet. 362:697–703. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng Y, Fu X, Lou X and Fu B: Stromal
cell-derived factor 1 protects human periodontal ligament stem
cells against hydrogen peroxide-induced apoptosis. Mol Med Rep.
16:5001–5006. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kumagai K, Takeuchi R, Ishikawa H,
Yamaguchi Y, Fujisawa T, Kuniya T, Takagawa S, Muschler GF and
Saito T: Low-intensity pulsed ultrasound accelerates fracture
healing by stimulation of recruitment of both local and circulating
osteogenic progenitors. J Orthop Res. 30:1516–1521. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wei FY, Leung KS, Li G, Qin J, Chow SK,
Huang S, Sun MH, Qin L and Cheung WH: Low intensity pulsed
ultrasound enhanced mesenchymal stem cell recruitment through
stromal derived factor-1 signaling in fracture healing. PloS One.
9:e1067222014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kimura Y, Komaki M, Iwasaki K, Sata M,
Izumi Y and Morita I: Recruitment of bone marrow-derived cells to
periodontal tissue defects. Front Cell Dev Biol. 2:192014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Du L, Yang P and Ge S: Stromal
cell-derived factor-1 significantly induces proliferation,
migration, and collagen type I expression in a human periodontal
ligament stem cell subpopulation. J Periodontol. 83:379–388. 2012.
View Article : Google Scholar
|
26
|
Arthur A, Cakouros D, Cooper L, Nguyen T,
Isenmann S, Zannettino AC, Glackin CA and Gronthos S: Twist-1
enhances bone marrow mesenchymal stromal cell support of
hematopoiesis by modulating CXCL12 expression. Stem Cells.
34:504–509. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Weiss MB, Abel EV, Dadpey N and Aplin AE:
FOXD3 modulates migration through direct transcriptional repression
of TWIST1 in melanoma. Mol Cancer Res. 12:1314–1323. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Duan Y, He Q, Yue K, Si H, Wang J, Zhou X
and Wang X: Hypoxia induced Bcl-2/Twist1 complex promotes tumor
cell invasion in oral squamous cell carcinoma. Oncotarget.
8:7729–7739. 2017. View Article : Google Scholar :
|
29
|
Mahmoud MM, Kim HR, Xing R, Hsiao S,
Mammoto A, Chen J, Serbanovic-Canic J, Feng S, Bowden NP, Maguire
R, et al: TWIST1 integrates endothelial responses to flow in
vascular dysfunction and atherosclerosis. Circ Res. 119:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Desprat N, Supatto W, Pouille PA,
Beaurepaire E and Farge E: Tissue deformation modulates twist
expression to determine anterior midgut differentiation in
Drosophila embryos. Dev Cell. 15:470–477. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Afanador E, Yokozeki M, Oba Y, Kitase Y,
Takahashi T, Kudo A and Moriyama K: Messenger RNA expression of
periostin and Twist transiently decrease by occlusal hypofunction
in mouse periodontal ligament. Arch Oral Biol. 50:1023–1031. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li J, Li H, Tian Y, Yang Y, Chen G, Guo W
and Tian W: Cytoskeletal binding proteins distinguish cultured
dental follicle cells and periodontal ligament cells. Exp Cell Res.
345:6–16. 2016. View Article : Google Scholar
|
33
|
Tian Y, Bai D, Guo W, Li J, Zeng J, Yang
L, Jiang Z, Feng L, Yu M and Tian W: Comparison of human dental
follicle cells and human periodontal ligament cells for dentin
tissue regeneration. Regen Med. 10:461–479. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang X, Hu B, Sun J, Li J, Liu S and Song
J: Inhibitory effect of low-intensity pulsed ultrasound on the
expression of lipopolysaccharide-induced inflammatory factors in
U937 cells. J Ultrasound Med. 36:2419–2429. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z,
Zhuo Z, Xia H, Gao Y and Tan K: Ultrasound-targeted stromal
cell-derived factor-1-loaded microbubble destruction promotes
mesenchymal stem cell homing to kidneys in diabetic nephropathy
rats. Int J Nanomedicine. 9:5639–5651. 2014.PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔC T method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
37
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao H, Priebe W, Glod J and Banerjee D:
Activation of signal transducers and activators of transcription 3
and focal adhesion kinase by stromal cell-derived factor 1 is
required for migration of human mesenchymal stem cells in response
to tumor cell-conditioned medium. Stem Cells. 27:857–865. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang Z, Ren L, Deng F, Wang Z and Song J:
Low-intensity pulsed ultrasound induces osteogenic differentiation
of human periodontal ligament cells through activation of bone
morphogenetic protein-smad signaling. J Ultrasound Med. 33:865–873.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ren L, Yang Z, Song J, Wang Z, Deng F and
Li W: Involvement of p38 MAPK pathway in low intensity pulsed
ultrasound induced osteogenic differentiation of human periodontal
ligament cells. Ultrasonics. 53:686–690. 2013. View Article : Google Scholar
|
41
|
Karp JM and Leng Teo GS: Mesenchymal stem
cell homing: The devil is in the details. Cell Stem Cell.
4:206–216. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nanci A and Bosshardt DD: Structure of
periodontal tissues in health and disease. Periodontol 2000.
40:11–28. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Seo BM, Miura M, Gronthos S, Bartold PM,
Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S:
Investigation of multi-potent postnatal stem cells from human
periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Choi JK, Hwang HI and Jang YJ: The
efficiency of the in vitro osteo/dentinogenic differentiation of
human dental pulp cells, periodontal ligament cells and gingival
fibroblasts. Int J Mol Med. 35:161–168. 2015. View Article : Google Scholar
|
45
|
Zhou J, Shi S, Shi Y, Xie H, Chen L, He Y,
Guo W, Wen L and Jin Y: Role of bone marrow-derived progenitor
cells in the maintenance and regeneration of dental mesenchymal
tissues. J Cell Physiol. 226:2081–2090. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lapidot T and Kollet O: The essential
roles of the chemokine SDF-1 and its receptor CXCR4 in human stem
cell homing and repopulation of transplanted immune-deficient
NOD/SCID and NOD/SCID/B2mnull mice. Leukemia.
16:1992–2003. 2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li L, Wu S, Li P, Zhuo L, Gao Y and Xu Y:
Hypoxic preconditioning combined with microbubble-mediated
ultrasound effect on MSCs promote SDF-1/CXCR4 expression and its
migration ability: An in vitro study. Cell Biochem Biophys.
73:749–757. 2015. View Article : Google Scholar
|
48
|
Kshitiz, Park J, Kim P, Helen W, Engler
AJ, Levchenko A and Kim DH: Control of stem cell fate and function
by engineering physical microenvironments. Integr Biol.
4:1008–1018. 2012. View Article : Google Scholar
|
49
|
Guilak F, Cohen DM, Estes BT, Gimble JM,
Liedtke W and Chen CS: Control of stem cell fate by physical
interactions with the extracellular matrix. Cell Stem Cell.
5:17–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yan Y, Tian Z, Guan Q, Bai D, Zhang J and
Han X: The role of Twist1 in stem cell differentiation through
mechanical cues: A review and hypothesis. Br J Med Med Res. 17:1–9.
2016. View Article : Google Scholar
|
51
|
Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH,
Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ and Yang J:
Matrix stiffness drives epithelial-mesenchymal transition and
tumour metastasis through a TWIST1-G3BP2 mechanotransduction
pathway. Nat Cell Biol. 17:678–688. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Von Lüttichau I, Notohamiprodjo M,
Wechselberger A, Peters C, Henger A, Seliger C, Djafarzadeh R, Huss
R and Nelson PJ: Human adult CD34− progenitor cells
functionally express the chemokine receptors CCR1, CCR4, CCR7,
CXCR5, and CCR10 but not CXCR4. Stem Cells Dev. 14:329–336. 2005.
View Article : Google Scholar
|