Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review)
- Authors:
- Xianliang Dai
- Li Hua
- Yihong Chen
- Jiamei Wang
- Jingyi Li
- Feng Wu
- Yanda Zhang
- Jiyuan Su
- Zonggui Wu
- Chun Liang
-
Affiliations: Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China - Published online on: March 30, 2018 https://doi.org/10.3892/ijmm.2018.3605
- Pages: 3-12
-
Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cavasin MA, Liao TD, Yang XP, Yang JJ and Carretero OA: Decreased endogenous levels of Ac-SDKP promote organ fibrosis. Hypertension. 50:130–136. 2007. View Article : Google Scholar : PubMed/NCBI | |
Neutel JM, Giles TD, Punzi H, Weiss RJ, Li H and Finck A: Long-term safety of nebivolol and valsartan combination therapy in patients with hypertension: An open-label, single-arm, multicenter study. J Am Soc Hypertens. 8:915–920. 2014. View Article : Google Scholar : PubMed/NCBI | |
Safaeian L, Hajhashemi V, Haghjoo Javanmard S and Sanaye Naderi H: The effect of protocatechuic acid on blood pressure and oxidative stress in glucocorticoid-induced hypertension in rat. Iran J Pharm Res. 15(Suppl): S83–S91. 2016. | |
Chmielewski V, Drupt F and Morfin R: Dexamethasone-induced apoptosis of mouse thymocytes: Prevention by native 7alpha-hydroxysteroids. Immunol Cell Biol. 78:238–246. 2000. View Article : Google Scholar : PubMed/NCBI | |
Walters SN, Webster KE, Daley S and Grey ST: A role for intrathymic B cells in the generation of natural regulatory T cells. J Immunol. 193:170–176. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R and Sempowski GD: Thymic involution and immune reconstitution. Trends Immunol. 30:366–373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP and Zaunders JJ: Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 81:487–495. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ruan L, Zhang Z, Mu L, Burnley P, Wang L, Coder B, Zhuge Q and Su DM: Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice. Cell Death Dis. 5:e14572014. View Article : Google Scholar : PubMed/NCBI | |
Fukuda S, Tsuchikura S and Iida H: Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm. Exp Anim. 53:67–72. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Iturbe B and Johnson RJ: The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Hypertens Res. 33:975–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Svendsen UG: The importance of thymus in the pathogenesis of the chronic phase of hypertension in mice following partial infarction of the kidney. Acta Pathol Microbiol Scand A. 85:539–547. 1977.PubMed/NCBI | |
Svendsen UG: The effect of penicillamine on blood pressure and vascular disease in mice with infarct-kidney hypertension. Scand J Rheumatol. 8:81–86. 1979. View Article : Google Scholar : PubMed/NCBI | |
Svendsen UG: The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol Microbiol Scand A. 84:235–243. 1976.PubMed/NCBI | |
Ba D, Takeichi N, Kodama T and Kobayashi H: Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 128:1211–1216. 1982.PubMed/NCBI | |
Bento-de-Souza L, Victor JR, Bento-de-Souza LC, Arrais-Santos M, Rangel-Santos AC, Pereira-Costa É, Raniero-Fernandes E, Seixas-Duarte MI, Oliveira-Filho JB and Silva Duarte AJ: Constitutive expression of genes encoding notch receptors and ligands in developing lymphocytes, nTreg cells and dendritic cells in the human thymus. Results Immunol. 6:15–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plum J, De Smedt M, Leclercq G, Taghon T, Kerre T and Vandekerckhove B: Human intrathymic development: A selective approach. Semin Immunopathol. 30:411–423. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Lancaster JN and Ehrlich LI: The contribution of chemokines and migration to the induction of central tolerance in the Thymus. Front Immunol. 6:3982015. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Lancaster JN, Sasiponganan C and Ehrlich LI: CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med. 212:1947–1965. 2015. View Article : Google Scholar : PubMed/NCBI | |
Love PE and Bhandoola A: Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol. 11:469–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Richards DM, Delacher M, Goldfarb Y, Kägebein D, Hofer AC, Abramson J and Feuerer M: Treg cell differentiation: From Thymus to peripheral tissue. Prog Mol Biol Transl Sci. 136:175–205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S, Kuchroo VK, Mathis D, Roncarolo MG, et al: Regulatory T cells: Recommendations to simplify the nomenclature. Nat Immunol. 14:307–308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y and Prévost-Blondel A: IL-4-induced gene 1: A negative immune checkpoint controlling B cell differentiation and activation. J Immunol. 200:1027–1038. 2018. View Article : Google Scholar | |
McLeod JJ, Baker B and Ryan JJ: Mast cell production and response to IL-4 and IL-13. Cytokine. 75:57–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, Lin W, Li G, Burch E, Tan M, et al: CD137 promotes proliferation and survival of human B cells. J Immunol. 184:787–795. 2010. View Article : Google Scholar | |
Nilsson G and Nilsson K: Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur J Immunol. 25:870–873. 1995. View Article : Google Scholar : PubMed/NCBI | |
Groves AM, Johnston CJ, Misra RS, Williams JP and Finkelstein JN: Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol. 92:754–765. 2016. View Article : Google Scholar : PubMed/NCBI | |
Francos-Quijorna I, Amo-Aparicio J, Martinez-Muriana A and López-Vales R: IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 64:2079–2092. 2016. View Article : Google Scholar : PubMed/NCBI | |
Czimmerer Z, Varga T, Kiss M, Vázquez CO, Doan-Xuan QM, Rückerl D, Tattikota SG, Yan X, Nagy ZS, Daniel B, et al: The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Med. 8:632016. View Article : Google Scholar : PubMed/NCBI | |
Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009. View Article : Google Scholar : PubMed/NCBI | |
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM and Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR and Weaver CT: Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 441:231–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kolls JK and Lindén A: Interleukin-17 family members and inflammation. Immunity. 21:467–476. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mazidi M, Penson P, Gluba-Brzozka A, Rysz J and Banach M: Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease. J Clin Lipidol. 11:617–623. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaur J: A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014:9431622014. View Article : Google Scholar : PubMed/NCBI | |
Ahbap E, Sakaci T, Kara E, Sahutoglu T, Koc Y, Basturk T, Sevinc M, Akgol C, Hasbal B, Isleem M, et al: Serum uric acid levels and inflammatory markers with respect to dipping status: A retrospective analysis of hypertensive patients with or without chronic kidney disease. Clin Exp Hypertens. 38:555–563. 2016. View Article : Google Scholar : PubMed/NCBI | |
Virdis A, Dell'Agnello U and Taddei S: Impact of inflammation on vascular disease in hypertension. Maturitas. 78:179–183. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L, Ferrannini E, Salvetti A and Monzani F: Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto's thyroiditis. J Clin Endocrinol Metab. 91:5076–5082. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mirsaeidi M, Omar HR, Ebrahimi G and Campos M: The association between ESR and CRP and systemic hypertension in sarcoidosis. Int J Hypertens. 2016:24025152016. View Article : Google Scholar : PubMed/NCBI | |
Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E and Carlström M: Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med. 99:87–98. 2016. View Article : Google Scholar : PubMed/NCBI | |
Victorio JA, Clerici SP, Palacios R, Alonso MJ, Vassallo DV, Jaffe IZ, Rossoni LV and Davel AP: Spironolactone prevents endothelial nitric oxide synthase uncoupling and vascular dysfunction induced by β-adrenergic overstimulation: Role of perivascular adipose tissue. Hypertension. 68:726–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Goto K, Fujii K, Onaka U, Abe I and Fujishima M: Renin-angiotensin system blockade improves endothelial dysfunction in hypertension. Hypertension. 36:575–580. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, Vapaatalo H, Muller D, Park JK, Luft FC and Mervaala EM: Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension. 37:433–439. 2001. View Article : Google Scholar : PubMed/NCBI | |
McIntyre M, Bohr DF and Dominiczak AF: Endothelial function in hypertension: The role of superoxide anion. Hypertension. 34:539–545. 1999. View Article : Google Scholar : PubMed/NCBI | |
Virdis A, Ghiadoni L, Plantinga Y, Taddei S and Salvetti A: C-reactive protein and hypertension: Is there a causal relationship. Curr Pharm Des. 13:1693–1698. 2007. View Article : Google Scholar | |
Bautista LE, Vera LM, Arenas IA and Gamarra G: Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 19:149–154. 2005. View Article : Google Scholar | |
Lakoski SG, Cushman M, Palmas W, Blumenthal R, D'Agostino RB Jr and Herrington DM: The relationship between blood pressure and C-reactive protein in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 46:1869–1874. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schiffrin EL: Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 126:267–274. 2014. View Article : Google Scholar | |
Blake GJ, Rifai N, Buring JE and Ridker PM: Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 108:2993–2999. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bermudez EA, Rifai N, Buring J, Manson JE and Ridker PM: Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 22:1668–1673. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chae CU, Lee RT, Rifai N and Ridker PM: Blood pressure and inflammation in apparently healthy men. Hypertension. 38:399–403. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yamada S, Gotoh T, Nakashima Y, Kayaba K, Ishikawa S, Nago N, Nakamura Y, Itoh Y and Kajii E: Distribution of serum C-reactive protein and its association with atherosclerotic risk factors in a Japanese population: Jichi medical school cohort study. Am J Epidemiol. 153:1183–1190. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ford ES and Giles WH: Serum C-reactive protein and fibrinogen concentrations and self-reported angina pectoris and myocardial infarction: Findings from national health and nutrition examination survey III. J Clin Epidemiol. 53:95–102. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rohde LE, Hennekens CH and Ridker PM: Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol. 84:1018–1022. 1999. View Article : Google Scholar : PubMed/NCBI | |
Venugopal SK, Devaraj S, Yuhanna I, Shaul P and Jialal I: Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 106:1439–1441. 2002. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B and Mickle DA: Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 105:1890–1896. 2002. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA and Stewart DJ: A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 106:913–919. 2002. View Article : Google Scholar : PubMed/NCBI | |
Romero JC and Reckelhoff JF: State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 34:943–949. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mervaala E, Müller DN, Schmidt F, Park JK, Gross V, Bader M, Breu V, Ganten D, Haller H and Luft FC: Blood pressure-independent effects in rats with human renin and angiotensinogen genes. Hypertension. 35:587–594. 2000. View Article : Google Scholar : PubMed/NCBI | |
Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H and Luft FC: NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension. 35:193–201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Müller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F, Theuer J, Breu V, Mackman N, Luther T, et al: Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol. 157:111–122. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, Que B, Dong J, Zhou Y and Nie S: Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017:71462902017. View Article : Google Scholar : PubMed/NCBI | |
McMaster WG, Kirabo A, Madhur MS and Harrison DG: Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 116:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ and Harrison DG: Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 55:500–507. 2010. View Article : Google Scholar : | |
De Ciuceis C, Rossini C, La Boria E, Porteri E, Petroboni B, Gavazzi A, Sarkar A, Rosei EA and Rizzoni D: Immune mechanisms in hypertension. High Blood Press Cardiovasc Prev. 21:227–234. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Huang S, He Z, Wu F, Ding R, Chen Y, Liang C and Wu Z: Dysfunction of the thymus in mice with hypertension. Exp Ther Med. 13:1386–1392. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ebringer A and Doyle AE: Raised serum IgG levels in hypertension. Br Med J. 2:146–148. 1970. View Article : Google Scholar : PubMed/NCBI | |
Leibowitz A and Schiffrin EL: Immune mechanisms in hypertension. Curr Hypertens Rep. 13:465–472. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI | |
Wing K and Sakaguchi S: Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 11:7–13. 2010. View Article : Google Scholar | |
Mellanby RJ, Thomas DC and Lamb J: Role of regulatory T-cells in autoimmunity. Clin Sci (Lond). 116:639–649. 2009. View Article : Google Scholar | |
Piccirillo CA, d'Hennezel E, Sgouroudis E and Yurchenko E: CD4+Foxp3+ regulatory T cells in the control of autoimmunity: In vivo veritas. Curr Opin Immunol. 20:655–662. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takeichi N, Suzuki K and Kobayashi H: Characterization of immunological depression in spontaneously hypertensive rats. Eur J Immunol. 11:483–487. 1981. View Article : Google Scholar : PubMed/NCBI | |
Olsen F: Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C. 88:1–5. 1980.PubMed/NCBI | |
Takeichi N, Suzuki K, Okayasu T and Kobayashi H: Immunological depression in spontaneously hypertensive rats. Clin Exp Immunol. 40:120–126. 1980.PubMed/NCBI | |
Svendsen UG: Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A. 84:523–528. 1976.PubMed/NCBI | |
Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ and Harrison DG: T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry. 71:774–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A and Weyand CM: Inflammation, immunity, and hypertension. Hypertension. 57:132–140. 2011. View Article : Google Scholar | |
Muller DN, Kvakan H and Luft FC: Immune-related effects in hypertension and target-organ damage. Curr Opin Nephrol Hypertens. 20:113–117. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calame DG, Mueller-Ortiz SL and Wetsel RA: Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology. 221:1407–1417. 2016. View Article : Google Scholar : PubMed/NCBI | |
D'Alincourt Salazar M, Manuel ER, Tsai W, D'Apuzzo M, Goldstein L, Blazar BR and Diamond DJ: Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer. Oncoimmunology. 5:e11601842016. View Article : Google Scholar : PubMed/NCBI | |
Weyd H: More than just innate affairs-on the role of annexins in adaptive immunity. Biol Chem. 397:1017–1029. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kvakan H, Luft FC and Muller DN: Role of the immune system in hypertensive target organ damage. Trends Cardiovasc Med. 19:242–246. 2009. View Article : Google Scholar | |
Vergaro G, Prud'homme M, Fazal L, Merval R, Passino C, Emdin M, Samuel JL, Cohen Solal A and Delcayre C: Inhibition of Galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension. 67:606–612. 2016.PubMed/NCBI | |
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG and Ehmke H: Immune mechanisms in arterial hypertension. J Am Soc Nephrol. 27:677–686. 2016. View Article : Google Scholar : | |
Harrison DG: The immune system in hypertension. Trans Am Clin Climatol Assoc. 125:130–140. 2014.PubMed/NCBI | |
Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, et al: Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem. 289:27540–27550. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yang F, Yang XP, Jankowski M and Pagano PJ: NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 23:776–782. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, et al: Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 124:1370–1381. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ko EA, Amiri F, Pandey NR, Javeshghani D, Leibovitz E, Touyz RM and Schiffrin EL: Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: Evidence from m-CSF-deficient mice. Am J Physiol Heart Circ Physiol. 292:H1789–H1795. 2007. View Article : Google Scholar | |
De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM and Schiffrin EL: Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: Evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 25:2106–2113. 2005. View Article : Google Scholar : PubMed/NCBI | |
Abais-Battad JM, Rudemiller NP and Mattson DL: Hypertension and immunity: Mechanisms of T cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens. 24:470–474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schiffrin EL: The immune system: Role in hypertension. Can J Cardiol. 29:543–548. 2013. View Article : Google Scholar | |
Verlohren S, Muller DN, Luft FC and Dechend R: Immunology in hypertension, preeclampsia, and target-organ damage. Hypertension. 54:439–443. 2009. View Article : Google Scholar : PubMed/NCBI | |
Idris-Khodja N, Mian MO, Paradis P and Schiffrin EL: Dual opposing roles of adaptive immunity in hypertension. Eur Heart J. 35:1238–1244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 204:2449–2460. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang W and Victor RG: Calcineurin inhibitors cause renal afferent activation in rats: A novel mechanism of cyclosporine-induced hypertension. Am J Hypertens. 13:999–1004. 2000. View Article : Google Scholar | |
Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, Parra G, Herrera-Acosta J, Gómez-Garre D, Largo R, et al: Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59:2222–2232. 2001. View Article : Google Scholar : PubMed/NCBI | |
Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, et al: Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol. 295:F515–F524. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Spizzo I, Diep H, Drummond GR, Widdop RE and Vinh A: Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice. PLoS One. 9:e1148952014. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal AS: Regulation of the immune response-role of the macrophage. N Engl J Med. 303:1153–1156. 1980. View Article : Google Scholar : PubMed/NCBI | |
Gordon S: The role of the macrophage in immune regulation. Res Immunol. 149:685–688. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lam RS, O'Brien-Simpson NM, Holden JA, Lenzo JC and Fong SB: Reynolds EC. Unprimed, M1 and M2 macrophages differentially interact with porphyromonas gingivalis. PLoS One. 11:e01586292016. View Article : Google Scholar : PubMed/NCBI | |
Mellman I and Steinman RM: Dendritic cells: Specialized and regulated antigen processing machines. Cell. 106:255–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Goldschneider I and Cone RE: A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 24:77–81. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oh J and Shin JS: The role of dendritic cells in central tolerance. Immune Netw. 15:111–120. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gelosa P, Pignieri A, Gianazza E, Criniti S, Guerrini U, Cappellini MD, Banfi C, Tremoli E and Sironi L: Altered iron homeostasis in an animal model of hypertensive nephropathy: Stroke-prone rats. J Hypertens. 31:2259–2269. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singh MV, Chapleau MW, Harwani SC and Abboud FM: The immune system and hypertension. Immunol Res. 59:243–253. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rudemiller N, Lund H, Jacob HJ, Geurts AM and Mattson DL: PhysGen Knockout Program: CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension. 63:559–564. 2014. View Article : Google Scholar | |
Luft FC, Dechend R and Muller DN: Immune mechanisms in angiotensin II-induced target-organ damage. Ann Med. 44(Suppl 1): S49–S54. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y and Johnson RJ: Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 39:96–103. 2012. View Article : Google Scholar | |
Moon JY: Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press. 11:41–45. 2013. View Article : Google Scholar | |
White FN and Grollman A: Autoimmune factors associated with infarction of the kidney. Nephron. 1:93–102. 1964. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G and Vaziri ND: Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 24:587–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S and Vaziri ND: Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 315:51–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marvar PJ, Gordon FJ and Harrison DG: Blood pressure control: Salt gets under your skin. Nat Med. 15:487–488. 2009. View Article : Google Scholar : PubMed/NCBI | |
Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS and Ruiz P: Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 298:R1089–R1097. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Miguel C, Das S, Lund H and Mattson DL: T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 298:R1136–R1142. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Zollbrecht C, Winerdal ME, Zhuge Z, Zhang XM, Terrando N, Checa A, Sällström J, Wheelock CE, Winqvist O, et al: Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J Am Heart Assoc. 5:e0038682016. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Nordlohne J, Ge S, Hertel B, Melk A, Rong S, Haller H and von Vietinghoff S: T Cell CX3CR1 Mediates excess atherosclerotic inflammation in renal impairment. J Am Soc Nephrol. 27:1753–1764. 2016. View Article : Google Scholar : | |
Lucchini M, Fifer WP, Sahni R and Signorini MG: Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants. Physiol Meas. 37:1436–1446. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reijman S, Bakermans-Kranenburg MJ, Hiraoka R, Crouch JL, Milner JS, Alink LR and van IJzendoorn MH: Baseline functioning and stress reactivity in maltreating parents and at-risk adults: Review and meta-analyses of autonomic nervous system studies. Child Maltreat. 1077559516659937. 2016. View Article : Google Scholar : PubMed/NCBI | |
Olofsson PS, Rosas-Ballina M, Levine YA and Tracey KJ: Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol Rev. 248:188–204. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ and Harrison DG: Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 107:263–270. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR, Zheng L, Ross CR, Musch TI, Fels RJ and Kenney MJ: Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol. 289:H1683–H1691. 2005. View Article : Google Scholar : PubMed/NCBI | |
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW and Tracey KJ: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405:458–462. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ader R, Felten D and Cohen N: Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol. 30:561–602. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bulloch K and Pomerantz W: Autonomic nervous system innervation of thymic-related lymphoid tissue in wildtype and nude mice. J Comp Neurol. 228:57–68. 1984. View Article : Google Scholar : PubMed/NCBI | |
Nance DM, Hopkins DA and Bieger D: Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun. 1:134–147. 1987. View Article : Google Scholar : PubMed/NCBI | |
Tollefson L and Bulloch K: Dual-label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J Neurosci Res. 25:20–28. 1990. View Article : Google Scholar : PubMed/NCBI | |
Roggero E, Besedovsky HO and del Rey A: The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation. 18:339–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Winklewski PJ, Radkowski M and Demkow U: Relevance of immune-sympathetic nervous system interplay for the development of hypertension. Adv Exp Med Biol. 884:37–43. 2016. View Article : Google Scholar | |
Pongratz G and Straub RH: The sympathetic nervous response in inflammation. Arthritis Res Ther. 16:5042014. View Article : Google Scholar : PubMed/NCBI | |
Fisher JP and Paton JF: The sympathetic nervous system and blood pressure in humans: Implications for hypertension. J Hum Hypertens. 26:463–475. 2012. View Article : Google Scholar | |
Cupić V, Colić M, Jandrić D, Milojković B and Varagić VM: Xylazine, an alpha 2-adrenergic agonist, induces apoptosis of rat thymocytes and a thymocyte hybridoma line in vitro. Methods Find Exp Clin Pharmacol. 25:5–10. 2003. View Article : Google Scholar | |
Trotter RN, Stornetta RL, Guyenet PG and Roberts MR: Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 131:9–20. 2007. View Article : Google Scholar | |
Elenkov IJ, Wilder RL, Chrousos GP and Vizi ES: The sympathetic nerve-an integrative interface between two supersystems: The brain and the immune system. Pharmacol Rev. 52:595–638. 2000.PubMed/NCBI | |
Vizi ES, Orsó E, Osipenko ON, Haskó G and Elenkov IJ: Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience. 68:1263–1276. 1995. View Article : Google Scholar : PubMed/NCBI | |
ThyagaRajan S, Madden KS, Teruya B, Stevens SY and Felten DL: Bellinger DL. Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol. 233:54–64. 2011. View Article : Google Scholar : | |
Leposavić G, Ugresić N, Pejcić-Karapetrović B and Mićić M: Castration of sexually immature rats affects sympathetic innervation of the adult thymus. Neuroimmunomodulation. 7:59–67. 2000. View Article : Google Scholar | |
Leposavić G, Mićić M, Ugresić N, Bogojević M and Isaković K: Components of sympathetic innervation of the rat thymus during late fetal and postnatal development: Histofluorescence and biochemical study. Sympathetic innervation of the rat thymus Thymus. 19:77–87. 1992. | |
Vink EE, Boer A, Verloop WL, Spiering W, Voskuil M, Vonken E, Hoogduin JM, Leiner T, Bots ML and Blankestijn PJ: The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension. Eur Radiol. 25:1984–1992. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abboud FM, Harwani SC and Chapleau MW: Autonomic neural regulation of the immune system: Implications for hypertension and cardiovascular disease. Hypertension. 59:755–762. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heran BS, Galm BP and Wright JM: Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev. CD004643. 2012. | |
Esler M: The sympathetic nervous system through the ages: From Thomas Willis to resistant hypertension. Exp Physiol. 96:611–622. 2011.PubMed/NCBI | |
Frishman WH: Saunders E. β-adrenergic blockers. J Clin Hypertens (Greenwich). 13:649–653. 2011. View Article : Google Scholar | |
Abboud FM: The Walter B. Cannon Memorial Award Lecture, 2009. Physiology in perspective: The wisdom of the body. In search of autonomic balance: The good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol. 298:R1449–R1467. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD and Rossing MA: Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 50:904–910. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zheng C, Sato T, Kawada T, Sugimachi M and Sunagawa K: Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 109:120–124. 2004. View Article : Google Scholar | |
Hering D and Schlaich M: The role of central nervous system mechanisms in resistant hypertension. Curr Hypertens Rep. 17:582015. View Article : Google Scholar : PubMed/NCBI | |
Brody MJ, Varner KJ and Vasquez EC: Lewis SJ. Central nervous system and the pathogenesis of hypertension. Sites and mechanisms. Hypertension. 18(Suppl 5): pp. III7–III12. 1991, View Article : Google Scholar | |
Zubcevic J, Waki H, Raizada MK and Paton JF: Autonomic-immune-vascular interaction: An emerging concept for neurogenic hypertension. Hypertension. 57:1026–1033. 2011. View Article : Google Scholar : PubMed/NCBI | |
Raizada MK and Paton JF: Recent advances in the renin-angiotensin system: Angiotensin-converting enzyme 2 and (pro) renin receptor. Exp Physiol. 93:517–518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wyss JM: The role of the sympathetic nervous system in hypertension. Curr Opin Nephrol Hypertens. 2:265–273. 1993. View Article : Google Scholar : PubMed/NCBI | |
Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM and Johnson AK: Heart failure and the brain: New perspectives. Am J Physiol Regul Integr Comp Physiol. 284:R259–R276. 2003. View Article : Google Scholar : PubMed/NCBI | |
Eikelis N, Hering D, Marusic P, Walton A, Lambert E, Krum H, Lambert G, Esler M and Schlaich M: [Op.7d.10]. The effect of renal denervation on adipokines in patients with resistant hypertension. J Hypertens. 34(Suppl 2): e972016. View Article : Google Scholar | |
Rosa J, Widimsky P, Waldauf P, Lambert L, Zelinka T, Taborsky M, Branny M, Tousek P, Petrak O, Curila K, et al: [Op.7d.09] the role of adding spironolactone and renal denervation in true resistant hypertension. One-year outcomes of randomized prague-15 study. J Hypertens. 34(Suppl 2): e96–e97. 2016. View Article : Google Scholar | |
Rosa J, Widimský P, Waldauf P, Lambert L, Zelinka T, Táborský M, Branny M, Toušek P, Petrák O, Čurila K, et al: Role of adding spironolactone and renal denervation in true resistant hypertension: One-year outcomes of randomized PRAGUE-15 study. Hypertension. 67:397–403. 2016. | |
Calhoun DA: Spironolactone versus renal nerve denervation for treatment of uncontrolled resistant hypertension. J Hypertens. 34:1701–1703. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi XY, Cheng B, Li YL and Wang YF: Renal denervation, adjusted drugs, or combined therapy for resistant hypertension: A meta-regression. Medicine (Baltimore). 95:e39392016. View Article : Google Scholar | |
Esler M: Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 25:107–115. 2015. View Article : Google Scholar | |
Esler MD, Krum H, Schlaich M, Schmieder RE, Böhm M and Sobotka PA: Symplicity HTN-2 Investigators: Renal sympathetic denervation for treatment of drug-resistant hypertension: One-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 126:2976–2982. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fink GD and Osborn JW: Renal nerves: Time for reassessment of their role in hypertension. Am J Hypertens. 27:1245–1247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, et al: Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 36:219–227. 2015. View Article : Google Scholar : | |
Schlaich MP, Esler MD, Fink GD, Osborn JW and Euler DE: Targeting the sympathetic nervous system: Critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension. 63:426–432. 2014. View Article : Google Scholar | |
Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, et al: Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 373:1275–1281. 2009. View Article : Google Scholar : PubMed/NCBI | |
Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE and Böhm M: Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): A randomised controlled trial. Lancet. 376:1903–1909. 2010. View Article : Google Scholar : PubMed/NCBI | |
Symplicity HTN-1 Investigators: Catheter-based renal sympathetic denervation for resistant hypertension: Durability of blood pressure reduction out to 24 months. Hypertension. 57:911–917. 2011. View Article : Google Scholar : PubMed/NCBI | |
Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y and Papademetriou V: Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: The EnligHTN I trial. Eur Heart J. 34:2132–2140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Feng Y, Barnes P, Huang FF, Idell S and Su DM: Shams H. Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS One. 7:e346812012. View Article : Google Scholar : PubMed/NCBI | |
Chidgey A, Dudakov J, Seach N and Boyd R: Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol. 19:331–340. 2007. View Article : Google Scholar : PubMed/NCBI | |
Taub DD and Longo DL: Insights into thymic aging and regeneration. Immunol Rev. 205:72–93. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fry TJ and Mackall CL: Current concepts of thymic aging. Springer Semin Immunopathol. 24:7–22. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB and Witte PL: Le PT. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood. 118:5723–5731. 2011. View Article : Google Scholar : PubMed/NCBI | |
Swain S, Clise-Dwyer K and Haynes L: Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 17:370–377. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haynes BF, Markert ML, Sempowski GD, Patel DD and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stutman O and Good RA: Duration of thymic function. Ser Haematol. 7:505–523. 1974.PubMed/NCBI | |
Thoman ML: The pattern of T lymphocyte differentiation is altered during thymic involution. Mech Ageing Dev. 82:155–170. 1995. View Article : Google Scholar | |
Ortman CL, Dittmar KA, Witte PL and Le PT: Molecular characterization of the mouse involuted thymus: Aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol. 14:813–822. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bredenkamp N, Nowell CS and Blackburn CC: Regeneration of the aged thymus by a single transcription factor. Development. 141:1627–1637. 2014. View Article : Google Scholar : PubMed/NCBI | |
Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, et al: Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol. 17:1206–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Wang S, Hyun J, Choi SS, Cha H and Ock M: Jung Y. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver. PLoS One. 10:e01227582015. View Article : Google Scholar : PubMed/NCBI | |
Paulussen M, Landuyt B, Schoofs L, Luyten W and Arckens L: Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 30:1822–1832. 2009. View Article : Google Scholar : PubMed/NCBI | |
Low TL and Goldstein AL: Chemical characterization of thymosin beta 4. J Biol Chem. 257:1000–1006. 1982.PubMed/NCBI | |
Low TL, Hu SK and Goldstein AL: Complete amino acid sequence of bovine thymosin beta 4: A thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 78:1162–1166. 1981. View Article : Google Scholar : PubMed/NCBI | |
Dedova IV, Nikolaeva OP, Safer D, De La, Cruz EM and dos Remedios CG: Thymosin beta4 induces a conformational change in actin monomers. Biophys J. 90:985–992. 2006. View Article : Google Scholar | |
Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N, Stoffler D, Aebi U and Mannherz HG: Polymerisation of chemically cross-linked actin: Thymosin beta(4) complex to filamentous actin: Alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. J Mol Biol. 315:613–625. 2002. View Article : Google Scholar : PubMed/NCBI | |
Safer D, Elzinga M and Nachmias VT: Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032. 1991.PubMed/NCBI | |
Pearse G: Normal structure, function and histology of the thymus. Toxicol Pathol. 34:504–514. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bock-Marquette I, Saxena A, White MD, Dimaio JM and Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 432:466–472. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sosne G, Szliter EA, Barrett R, Kernacki KA, Kleinman H and Hazlett LD: Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res. 74:293–299. 2002. View Article : Google Scholar : PubMed/NCBI | |
Malinda KM, Sidhu GS, Mani H, Banaudha K, Maheshwari RK, Goldstein AL and Kleinman HK: Thymosin beta4 accelerates wound healing. J Invest Dermatol. 113:364–368. 1999. View Article : Google Scholar : PubMed/NCBI | |
Goldstein AL, Hannappel E and Kleinman HK: Thymosin beta4: Actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 11:421–429. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu BJ, Shyr Y, Liang X, Ma LJ, Donnert EM, Roberts JD, Zhang X, Kon V, Brown NJ, Caprioli RM and Fogo AB: Proteomic patterns and prediction of glomerulosclerosis and its mechanisms. J Am Soc Nephrol. 16:2967–2975. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vasilopoulou E, Winyard PJ, Riley PR and Long DA: The role of thymosin-β4 in kidney disease. Expert Opin Biol Ther. 15(Suppl 1): S187–S190. 2015. View Article : Google Scholar | |
Zuo Y, Chun B, Potthoff SA, Kazi N, Brolin TJ, Orhan D, Yang HC, Ma LJ, Kon V, Myöhänen T, et al: Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int. 84:1166–1175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AK, Murphy SB and Kishore R: Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: Molecular basis of cardiac-selective fibrosis. PLoS One. 8:e638252013. View Article : Google Scholar : PubMed/NCBI | |
Ma LJ and Fogo AB: PAI-1 and kidney fibrosis. Front Biosci (Landmark Ed). 14:2028–2041. 2009. View Article : Google Scholar | |
Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR and Riley PR: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 445:177–182. 2007. View Article : Google Scholar | |
Grant DS, Rose W, Yaen C, Goldstein A, Martinez J and Kleinman H: Thymosin beta4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis. 3:125–135. 1999. View Article : Google Scholar | |
Liao TD, Yang XP, D'Ambrosio M, Zhang Y, Rhaleb NE and Carretero OA: N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: Council for high blood pressure research. Hypertension. 55:459–467. 2010. View Article : Google Scholar | |
Cavasin MA, Rhaleb NE, Yang XP and Carretero OA: Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension. 43:1140–1145. 2004. View Article : Google Scholar : PubMed/NCBI | |
Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA and Männistö PT: Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol. 163:1666–1678. 2011. View Article : Google Scholar : | |
García-Horsman JA, Männistö PT and Venäläinen JI: On the role of prolyl oligopeptidase in health and disease. Neuropeptides. 41:1–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
Myöhänen TT, García-Horsman JA, Tenorio-Laranga J and Männistö PT: Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem. 57:831–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shibuya K, Kanasaki K, Isono M, Sato H, Omata M, Sugimoto T, Araki S, Isshiki K, Kashiwagi A, Haneda M and Koya D: N-ace tyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes. 54:838–845. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cingolani OH, Yang XP, Liu YH, Villanueva M, Rhaleb NE and Carretero OA: Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. Hypertension. 43:1067–1073. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE and Carretero OA: Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 43:229–236. 2004. View Article : Google Scholar | |
Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N and Rhaleb NE: Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension. 42:1164–1170. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pradelles P, Frobert Y, Creminon C, Liozon E, Massé A and Frindel E: Negative regulator of pluripotent hematopoietic stem cell proliferation in human white blood cells and plasma as analysed by enzyme immunoassay. Biochem Biophys Res Commun. 170:986–993. 1990. View Article : Google Scholar : PubMed/NCBI | |
Pradelles P, Frobert Y, Créminon C, Ivonine H and Frindel E: Distribution of a negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin beta 4 in mouse tissues. FEBS Lett. 289:171–175. 1991. View Article : Google Scholar : PubMed/NCBI | |
Hrenak J, Paulis L and Simko F: N-acetyl-seryl-aspartyl-lysy l-proline (Ac-SDKP): Potential target molecule in research of heart, kidney and brain. Curr Pharm Des. 21:5135–5143. 2015. View Article : Google Scholar | |
Worou ME, Liao TD, D'Ambrosio M, Nakagawa P, Janic B, Peterson EL, Rhaleb NE and Carretero OA: Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension. 66:816–822. 2015. View Article : Google Scholar : PubMed/NCBI | |
Omata M, Taniguchi H, Koya D, Kanasaki K, Sho R, Kato Y, Kojima R, Haneda M and Inomata N: N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 17:674–685. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Ilasaca M, Liu X, Tamura K and Dzau VJ: The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell. 14:5038–5050. 2003. View Article : Google Scholar : PubMed/NCBI | |
Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M and Dzau VJ: Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem. 274:17058–17062. 1999. View Article : Google Scholar : PubMed/NCBI |