1
|
Ho PC and McMeel JW: Retinal detachment
with proliferative vitreoretinopathy: Surgical results with scleral
buckling, closed vitrectomy, and intravitreous air injection. Br J
Ophthalmol. 69:584–587. 1985. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kroll P, Rodrigues EB and Hoerle S:
Pathogenesis and classification of proliferative diabetic
vitreoretinopathy. Ophthalmologica. 221:78–94. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tosi GM, Marigliani D, Romeo N and Toti P:
Disease pathways in proliferative vitreoretinopathy: An ongoing
challenge. J Cell Physiol. 229:1577–1583. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cui JZ, Chiu A, Maberley D, Ma P, Samad A
and Matsubara JA: Stage specificity of novel growth factor
expression during development of proliferative vitreoretinopathy.
Eye. 21:200–208. 2007. View Article : Google Scholar
|
5
|
Pastor JC, de la Rúa ER and Martín F:
Proliferative vitreoretinopathy: Risk factors and pathobiology.
Prog Retin Eye Res. 21:127–144. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Grisanti S and Guidry C:
Transdifferentiation of retinal pigment epithelial cells from
epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci.
36:391–405. 1995.PubMed/NCBI
|
7
|
Pennock S, Haddock LJ, Eliott D, Mukai S
and Kazlauskas A: Is neutralizing vitreal growth factors a viable
strategy to prevent proliferative vitreoretinopathy. Prog Retin Eye
Res. 40:16–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lassègue B: Clempus RE. Vascular NAD(P)H
oxidases: Specific features, expression, and regulation. Am J
Physiol Regul. Integr Comp Physiol. 285:R277–R297. 2003. View Article : Google Scholar
|
9
|
Brown DI and Griendling KK: Nox proteins
in signal transduction. Free Radic Biol Med. 47:1239–1253. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kita T, Hata Y, Kano K, Miura M, Nakao S,
Noda Y, Shimokawa H and Ishibashi T: Transforming growth
factor-beta2 and connective tissue growth factor in proliferative
vitreoretinal diseases: Possible involvement of hyalocytes and
therapeutic potential of Rho kinase inhibitor. Diabetes.
56:231–238. 2007. View Article : Google Scholar
|
11
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qiu Y, Tao L, Lei C, Wang J, Yang P, Li Q
and Lei B: Downregulating p22phox ameliorates inflammatory response
in Angiotensin II-induced oxidative stress by regulating MAPK and
NF-κB pathways in ARPE-19 cells. Sci Rep. 5:143622015. View Article : Google Scholar
|
13
|
Kim JH, Park S, Chung H and Oh S: Wnt5a
attenuates the pathogenic effects of the Wnt/beta-catenin pathway
in human retinal pigment epithelial cells via down-regulating
β-catenin and Snail. BMB Rep. 48:525–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Michaeloudes C, Sukkar MB, Khorasani NM,
Bhavsar PK and Chung KF: TGF-β regulates Nox4, MnSOD and catalase
expression, and IL-6 release in airway smooth muscle cells. Am J
Physiol Lung Cell Mol Physiol. 300:L295–L304. 2011. View Article : Google Scholar
|
15
|
Li S, Tabar SS, Malec V, Eul BG, Klepetko
W, Weissmann N, Grimminger F, Seeger W, Rose F and Hänze J: NOX4
regulates ROS levels under normoxic and hypoxic conditions,
triggers proliferation, and inhibits apoptosis in pulmonary artery
adventitial fibroblasts. Antioxid Redox Signal. 10:1687–1698. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Pan X, Dai Y, Li X, Niu N, Li W, Liu F,
Zhao Y and Yu Z: Inhibition of arsenic-induced rat liver injury by
grape seed exact through suppression of NADPH oxidase and
TGF-β/Smad activation. Toxicol Appl Pharmacol. 254:323–331. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lapperre TS, Jimenez LA, Antonicelli F,
Drost EM, Hiemstra PS, Stolk J, MacNee W and Rahman I: Apocynin
increases glutathione synthesis and activates AP-1 in alveolar
epithelial cells. FEBS Lett. 443:235–239. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Engels F, Renirie BF, Hart BA, Labadie RP
and Nijkamp FP: Effects of apocynin, a drug isolated from the roots
of Picrorhiza kurroa, on arachidonic acid metabolism. FEBS Lett.
305:254–256. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Majander A, Finel M and Wikström M:
Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in
the mitochondrial NADH-ubiquinone oxidoreductase (Complex I). J
Biol Chem. 269:21037–21042. 1994.PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods.
25:402–408. 2001. View Article : Google Scholar
|
21
|
Ishikawa K, He S, Terasaki H, Nazari H,
Zhang H, Spee C, Kannan R and Hinton DR: Resveratrol inhibits
epithelial-mesenchymal transition of retinal pigment epithelium and
development of proliferative vitreoretinopathy. Sci Rep.
5:163862015. View Article : Google Scholar : PubMed/NCBI
|
22
|
ten Freyhaus H, Huntgeburth M, Wingler K,
Schnitker J, Bäumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer
H and Rosenkranz S: Novel Nox inhibitor VAS2870 attenuates
PDGF-dependent smooth muscle cell chemotaxis, but not
proliferation. Cardiovasc Res. 71:331–341. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Boudreau HE, Casterline BW, Burke DJ and
Leto TL: Wild-type and mutant p53 differentially regulate NADPH
oxidase 4 in TGF-β-mediated migration of human lung and breast
epithelial cells. Br J Cancer. 110:2569–2582. 2014. View Article : Google Scholar :
|
24
|
Green DE, Murphy TC, Kang BY, Kleinhenz
JM, Szyndralewiez C, Page P, Sutliff RL and Hart CM: The Nox4
inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular
cell proliferation. Am J Respir Cell Mol Biol. 47:718–726. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Martin-Garrido A, Brown DI, Lyle AN,
Dikalova A, Seidel-Rogol B, Lassègue B, San Martín A and Griendling
KK: NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin
via p38MAPK and serum response factor. Free Radic Biol Med.
50:354–362. 2011. View Article : Google Scholar
|
26
|
Tobar N, Toyes M, Urra C, Méndez N,
Arancibia R, Smith PC and Martínez J: c-Jun N terminal kinase
modulates NOX-4 derived ROS production and myofibroblasts
differentiation in human breast stromal cells. BMC Cancer.
14:6402014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Oka H, Shiozaki H, Kobayashi K, Inoue M,
Tahara H, Kobayashi T, Takatsuka Y, Matsuyoshi N, Hirano S,
Takeichi M, et al: Expression of E-cadherin cell adhesion molecules
in human breast cancer tissues and its relationship to metastasis.
Cancer Res. 53:1696–1701. 1993.PubMed/NCBI
|
28
|
Li H, Wang H, Wang F, Gu Q and Xu X: Snail
involves in the trans forming growth factor β1-mediated
epithelial-mesenchymal tran sition of retinal pigment epithelial
cells. PLoS One. 6:e233222011. View Article : Google Scholar
|
29
|
Palma-Nicolás JP and López-Colomé AM:
Trombin induces slug-mediated E-cadherin transcriptional repression
and the parallel up-regulation of N-cadherin by a
transcription-independent mechanism in RPE cells. J Cell Physiol.
228:581–589. 2013. View Article : Google Scholar
|
30
|
Zhang LL, Huang S, Ma XX, Zhang WY, Wang
D, Jin SY, Zhang YP, Li Y and Li X: Angiotensin(1-7) attenuated
angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived
H2O2-activated NLRP3 inflammasome/IL-1β/Smad
circuit. Free Radic Biol Med. 97:531–543. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Das SJ, Lovicu FJ and Collinson EJ: Nox4
plays a role in TGF-β-dependent lens epithelial to mesenchymal
transition. Invest Ophthalmol Vis Sci. 57:3665–3673. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Abrigo J, Morales MG, Simon F, Cabrera D,
Di Capua G and Cabello-Verrugio C: Apocynin inhibits the
upregulation of TGF-β1 expression and ROS production induced by
TGF-β in skeletal muscle cells. Phytomedicine. 22:885–893. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sancho P and Fabregat I: The NADPH oxidase
inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced
apoptosis of liver tumor cells. Biochem Pharmacol. 81:917–924.
2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Boudreau HE, Casterline BW, Rada B,
Korzeniowska A and Leto TL: Nox4 involvement in TGF-beta and
SMAD3-driven induction of the epithelial-to-mesenchymal transition
and migration of breast epithelial cells. Free Radic Biol Med.
53:1489–1499. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ge A, Ma Y, Liu YN, Li YS, Gu H, Zhang JX,
Wang QX, Zeng XN and Huang M: Diosmetin prevents TGF-β1-induced
epithelial-mesenchymal transition via ROS/MAPK signaling pathways.
Life Sci. 153:1–8. 2016. View Article : Google Scholar : PubMed/NCBI
|