1
|
Gerstenfeld LC, Cullinane DM, Barnes GL,
Graves DT and Einhorn TA: Fracture healing as a post-natal
developmental process: Molecular, spatial, and temporal aspects of
its regulation. J Cell Biochem. 88:873–884. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tsiridis E, Upadhyay N and Giannoudis P:
Molecular aspects of fracture healing: Which are the important
molecules? Injury. 38(Suppl 1): S11–S25. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Geris L, Gerisch A, Sloten JV, Weiner R
and Oosterwyck HV: Angiogenesis in bone fracture healing: A
bioregulatory model. J Theor Biol. 251:137–158. 2008. View Article : Google Scholar
|
4
|
Taguchi K, Ogawa R, Migita M, Hanawa H,
Ito H and Orimo H: The role of bone marrow-derived cells in bone
fracture repair in a green fluorescent protein chimeric mouse
model. Biochem Biophys Res Commun. 331:31–36. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Khosla S, Westendorf JJ and Oursler MJ:
Building bone to reverse osteoporosis and repair fractures. The
Journal of Clinical lnvestigation. 118:421–428.
2008.10.1172/JCI33612. View
Article : Google Scholar
|
6
|
Wan C, Gilbert SR, Wang Y, Cao X, Shen X,
Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC,
et al: Activation of the hypoxia-inducible factor-1alpha pathway
accelerates bone regeneration. Proc Natl Acad Sci USA. 105:686–691.
2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ivan M, Kondo K, Yang H, Kim W, Valiando
J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha
targeted for VHL-mediated destruction by proline hydroxylation:
Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jaakkola P, Mole DR, Tian YM, Wilson MI,
Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji
M, Schofield CJ, et al: Targeting of HIF-alpha to the von
Hippel-Lindau ubiquitylation complex by O2-regulated prolyl
hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kallio PJ, Okamoto K, O'Brien S, Carrero
P, Makino Y, Tanaka H and Poellinger L: Signal transduction in
hypoxic cells: Inducible nuclear translocation and recruitment of
the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha.
EMBO J. 17:6573–6586. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kusumbe AP, Ramasamy SK and Adams RH:
Coupling of angiogenesis and osteogenesis by a specific vessel
subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Brahimi-Horn MC and Pouysségur J:
Harnessing the hypoxia-inducible factor in cancer and ischemic
disease. Biochem Pharmacol. 73:450–457. 2007. View Article : Google Scholar
|
12
|
Liu Y, Berendsen AD, Jia S, Lotinun S,
Baron R, Ferrara N and Olsen BR: Intracellular VEGF regulates the
balance between osteoblast and adipocyte differentiation. J Clin
Invest. 122:3101–3113. 2012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Gensure RC, Gardella TJ and Jüppner H:
Parathyroid hormone and parathyroid hormone-related peptide, and
their receptors. Biochem Biophys Res Commun. 328:666–678. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Barnes GL, Kakar S, Vora S, Morgan EF,
Gerstenfeld LC and Einhorn TA: Stimulation of fracture-healing with
systemic intermittent parathyroid hormone treatment. J Bone Joint
Surg Am. 90(Suppl 1): 120–127. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Miao D, He B, Karaplis AC and Goltzman D:
Parathyroid hormone is essential for normal fetal bone formation. J
Clin Invest. 109:1173–1182. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xue Y, Karaplis AC, Hendy GN, Goltzman D
and Miao D: Genetic models show that parathyroid hormone and
1,25-dihydroxyvitamin D3 play distinct and synergistic roles in
postnatal mineral ion homeostasis and skeletal development. Hum Mol
Genet. 14:1515–1528. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren Y, Liu B, Feng Y, Shu L, Cao X,
Karaplis A, Goltzman D and Miao D: Endogenous PTH deficiency
impairs fracture healing and impedes the fracture-healing efficacy
of exogenous PTH(1-34). PLoS One. 6:e230602011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jilka RL, O'Brien CA, Bartell SM,
Weinstein RS and Manolagas SC: Continuous elevation of PTH
increases the number of osteoblasts via both osteoclast-dependent
and -independent mechanisms. J Bone Miner Res. 25:2427–2437. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rhee Y, Park SY, Kim YM, Lee S and Lim SK:
Angiogenesis inhibitor attenuates parathyroid hormone-induced
anabolic effect. Biomed Pharmacother. 63:63–68. 2009. View Article : Google Scholar
|
20
|
Prisby R, Guignandon A, Vanden-Bossche A,
Mac-Way F, Linossier MT, Thomas M, Laroche N, Malaval L, Langer M,
Peter ZA, et al: Intermittent PTH(1-84) is osteoanabolic but not
osteoangiogenic and relocates bone marrow blood vessels closer to
bone-forming sites. J Bone Miner Res. 26:2583–2596. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li X, Liu H, Qin L, Tamasi J, Bergenstock
M, Shapses S, Feyen JH, Notterman DA and Partridge NC:
Determination of dual effects of parathyroid hormone on skeletal
gene expression in vivo by microarray and network analysis. J Biol
Chem. 282:33086–33097. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Park SY, Kang JH, Jeong KJ, Lee J, Han JW,
Choi WS, Kim YK, Kang J, Park CG and Lee HY: Norepinephrine induces
VEGF expression and angiogenesis by a hypoxia-inducible factor-1α
protein-dependent mechanism. Int J Cancer. 128:2306–2316. 2011.
View Article : Google Scholar
|
23
|
Esbrit P, Alvarez-Arroyo MV, De Miguel F,
Martin O, Martinez ME and Caramelo C: C-terminal parathyroid
hormone-related protein increases vascular endothelial growth
factor in human osteoblastic cells. J Am Soc Nephrol. 11:1085–1092.
2000.PubMed/NCBI
|
24
|
Miao D, He B, Lanske B, Bai XY, Tong XK,
Hendy GN, Goltzman D and Karaplis AC: Skeletal abnormalities in
Pth-null mice are influenced by dietary calcium. Endocrinology.
145:2046–2053. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Marturano JE, Cleveland BC, Byrne MA,
O'Connell SL, Wixted JJ and Billiar KL: An improved murine femur
fracture device for bone healing studies. J Biomech. 41:1222–1228.
2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Menon P, Yin G, Smolock EM, Zuscik MJ, Yan
C and Berk BC: GPCR kinase 2 interacting protein 1 (GIT1) regulates
osteoclast function and bone mass. J Cell Physiol. 225:777–785.
2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yin G, Sheu TJ, Menon P, Pang J, Ho HC,
Shi S, Xie C, Smolock E, Yan C, Zuscik MJ, et al: Impaired
angiogenesis during fracture healing in GPCR kinase 2 interacting
protein-1 (GIT1) knock out mice. PLoS One. 9:e891272014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Krishnan V, Moore TL, Ma YL, Helvering LM,
Frolik CA, Valasek KM, Ducy P and Geiser AG: Parathyroid hormone
bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol
Endocrinol. 17:423–435. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling - in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tischer E, Mitchell R, Hartman T, Silva M,
Gospodarowicz D, Fiddes JC and Abraham JA: The human gene for
vascular endothelial growth factor. Multiple protein forms are
encoded through alternative exon splicing. J Biol Chem.
266:11947–11954. 1991.PubMed/NCBI
|
31
|
Holmes K, Roberts OL, Thomas AM and Cross
MJ: Vascular endothelial growth factor receptor-2: Structure,
function, intracellular signalling and therapeutic inhibition. Cell
Signal. 19:2003–2012. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schnoke M, Midura SB and Midura RJ:
Parathyroid hormone suppresses osteoblast apoptosis by augmenting
DNA repair. Bone. 45:590–602. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mayr-Wohlfart U, Waltenberger J, Hausser
H, Kessler S, Günther KP, Dehio C, Puhl W and Brenner RE: Vascular
endothelial growth factor stimulates chemotactic migration of
primary human osteoblasts. Bone. 30:472–477. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Street J, Bao M, deGuzman L, Bunting S,
Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL,
Daugherty A, et al: Vascular endothelial growth factor stimulates
bone repair by promoting angiogenesis and bone turnover. Proc Natl
Acad Sci USA. 99:9656–9661. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Keramaris NC, Calori GM, Nikolaou VS,
Schemitsch EH and Giannoudis PV: Fracture vascularity and bone
healing: A systematic review of the role of VEGF. Injury. 39(Suppl
2): S45–S57. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Collin-Osdoby P, Rothe L, Bekker S,
Anderson F, Huang Y and Osdoby P: Basic fibroblast growth factor
stimulates osteoclast recruitment, development, and bone pit
resorption in association with angiogenesis in vivo on the chick
chorioallantoic membrane and activates isolated avian osteoclast
resorption in vitro. J Bone Miner Res. 17:1859–1871. 2002.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Saijo M, Kitazawa R, Nakajima M, Kurosaka
M, Maeda S and Kitazawa S: Heparanase mRNA expression during
fracture repair in mice. Histochem Cell Biol. 120:493–503. 2003.
View Article : Google Scholar : PubMed/NCBI
|