FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma
- Authors:
- Eva Skarmoutsou
- Valentina Bevelacqua
- Fabio D' Amico
- Angela Russo
- Demetrios A. Spandidos
- Aurora Scalisi
- Grazia Malaponte
- Claudio Guarneri
-
Affiliations: Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece, Unit of Oncologic Diseases, ASP‑Catania, 95100 Catania, Italy, Research Unit of the Catania Section of the Italian League Against Cancer, 95122 Catania, Italy, Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy - Published online on: April 4, 2018 https://doi.org/10.3892/ijmm.2018.3618
- Pages: 392-404
-
Copyright: © Skarmoutsou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Buzaid AC: Management of metastatic cutaneous melanoma. Oncology (Williston Park). 18:1443–1450; discussion 1457–1459. 2004. | |
La Porta CA: Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets. 9:391–397. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fava P, Astrua C, Chiarugi A, Crocetti E, Pimpinelli N, Fargnoli MC, Maurichi A, Rubegni P, Manganoni AM, Bottoni U, et al: Differences in clinicopathological features and distribution of risk factors in Italian melanoma patients. Dermatology. 230:256–262. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maio M: Melanoma as a model tumour for immune-oncology. Ann Oncol. 23(Suppl 8): viii10–14. 2012. View Article : Google Scholar | |
Shrayer DP, Bogaars H, Wolf SF, Hearing VJ and Wanebo HJ: A new mouse model of experimental melanoma for vaccine and lymphokine therapy. Int J Oncol. 13:361–374. 1998.PubMed/NCBI | |
Nakai N, Katoh N, Kitagawa T, Ueda E, Takenaka H and Kishimoto S: Immunoregulatory T cells in the peripheral blood of melanoma patients treated with melanoma antigen-pulsed mature monocyte-derived dendritic cell vaccination. J Dermatol Sci. 54:31–37. 2009. View Article : Google Scholar : PubMed/NCBI | |
Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, Travali S, McCubrey JA, Spandidos DA and Libra M: Emerging targeted therapies for melanoma treatment (Review). Int J Oncol. 45:516–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K and Okuyama R: Immunotherapy for advanced melanoma: Current knowledge and future directions. J Dermatol Sci. 83:87–94. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slingluff CL Jr, Chianese-Bullock KA, Bullock TN, Grosh WW, Mullins DW, Nichols L, Olson W, Petroni G, Smolkin M and Engelhard VH: Immunity to melanoma antigens: From self-tolerance to immunotherapy. Adv Immunol. 90:243–295. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hori S, Nomura T and Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 299:1057–1061. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ramsdell F: Foxp3 and natural regulatory T cells: Key to a cell lineage. Immunity. 19:165–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 22:531–562. 2004. View Article : Google Scholar | |
Takeuchi Y and Nishikawa H: Roles of regulatory T cells in cancer immunity. Int Immunol. 28:401–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Li S, Yang WH and Wang L: IPEX syndrome, FOXP3 and cancer. J Syndr. 1:72013.PubMed/NCBI | |
Martin F, Ladoire S, Mignot G, Apetoh L and Ghiringhelli F: Human FOXP3 and cancer. Oncogene. 29:4121–4129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Coffer PJ and Burgering BM: Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 4:889–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Chen L, Hao F and Wu J: Transcriptional regulation of Foxp3 gene: Multiple signal pathways on the road. Med Res Rev. 29:742–766. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu H: FOXP3 expression and prognosis: Role of both the tumor and T cells. J Clin Oncol. 27:1735–1736. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, et al: Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 67:8344–8350. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, Barda AK, Gourgoulianis KI and Germenis AE: Foxp3 expression in human cancer cells. J Transl Med. 6:192008. View Article : Google Scholar : PubMed/NCBI | |
Wang WH, Jiang CL, Yan W, Zhang YH, Yang JT, Zhang C, Yan B, Zhang W, Han W, Wang JZ and Zhang YQ: FOXP3 expression and clinical characteristics of hepatocellular carcinoma. World J Gastroenterol. 16:5502–5509. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM and Li Y: FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: Implications for tumor progression and escape. Acta Histochem. 115:151–157. 2013. View Article : Google Scholar | |
Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U, Germer CT, et al: Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS One. 8:e536302013. View Article : Google Scholar : PubMed/NCBI | |
Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, Tagliabue E and Balsari A: FOXP3 expression and overall survival in breast cancer. J Clin Oncol. 27:1746–1752. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E and Marth C: The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res. 11:8326–8331. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, Thompson TC, Old LJ and Wang RF: CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 13:6947–6958. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niu J, Jiang C, Li C, Liu L, Li K, Jian Z and Gao T: Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother. 60:1109–1118. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP, MacGregor D, et al: The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 68:3001–3009. 2008. View Article : Google Scholar : PubMed/NCBI | |
Douglass S, Ali S, Meeson AP, Browell D and Kirby JA: The role of FOXP3 in the development and metastatic spread of breast cancer. Cancer Metastasis Rev. 31:843–854. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Yao Y, Jie W, Zhang M, Hu X, Zhao Y, Wang S, Yin J and Song Y: Up-regulation of Foxp3 participates in progression of cervical cancer. Cancer Immunol Immunother. 62:481–487. 2013. View Article : Google Scholar | |
Triulzi T, Tagliabue E, Balsari A and Casalini P: FOXP3 expression in tumor cells and implications for cancer progression. J Cell Physiol. 228:30–35. 2013. View Article : Google Scholar | |
Quaglino P, Osella-Abate S, Marenco F, Nardò T, Gado C, Novelli M, Savoia P and Bernengo MG: FoxP3 expression on melanoma cells is related to early visceral spreading in melanoma patients treated by electrochemotherapy. Pigment Cell Melanoma Res. 24:734–736. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gerber AL, Münst A, Schlapbach C, Shafighi M, Kiermeir D, Hüsler R and Hunger RE: High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol. 170:103–109. 2014. View Article : Google Scholar | |
Viguier M, Lemaître F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P and Ferradini L: Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 173:1444–1453. 2004. View Article : Google Scholar : PubMed/NCBI | |
Knol AC, Nguyen JM, Quéreux G, Brocard A, Khammari A and Dréno B: Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol. 20:430–434. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jandus C, Bioley G, Speiser DE and Romero P: Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother. 57:1795–1805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Zhao Y: The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: Multiple pathways on the road. J Cell Physiol. 211:590–597. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu Y, Dai L, Liu Q, Jia L, Wang H, An L, Jing X, Liu M, Li P and Cheng Z: Foxp3 downregulation in NSCLC mediates epithelial-mesenchymal transition via NF-κB signaling. Oncol Rep. 36:2282–2288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ou-Yang HF, Zhang HW, Wu CG, Zhang P, Zhang J, Li JC, Hou LH, He F, Ti XY, Song LQ, et al: Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem. 320:109–114. 2009. View Article : Google Scholar | |
Maruyama T, Konkel JE, Zamarron BF and Chen W: The molecular mechanisms of Foxp3 gene regulation. Semin Immunol. 23:418–423. 2011. View Article : Google Scholar : PubMed/NCBI | |
Uzdensky AB, Demyanenko SV and Bibov MY: Signal transduction in human cutaneous melanoma and target drugs. Curr Cancer Drug Targets. 13:843–866. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Sato C, Cerletti M and Wagers A: Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 92:367–409. 2010. View Article : Google Scholar : PubMed/NCBI | |
Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ: Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol. 7:678–689. 2006. View Article : Google Scholar : PubMed/NCBI | |
Radtke F and Raj K: The role of Notch in tumorigenesis: Oncogene or tumour suppressor. Nat Rev Cancer. 3:756–767. 2003. View Article : Google Scholar : PubMed/NCBI | |
Roy M, Pear WS and Aster JC: The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 17:52–59. 2007. View Article : Google Scholar | |
Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fortini ME: Notch signaling: The core pathway and its posttranslational regulation. Dev Cell. 16:633–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schroeter EH, Kisslinger JA and Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 393:382–386. 1998. View Article : Google Scholar : PubMed/NCBI | |
Koch U and Radtke F: Notch signaling in solid tumors. Curr Top Dev Biol. 92:411–455. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Dong Y, Zhang B, Xiong Y, Xu W, Cheng Y, Dai M, Yu Z, Xu H and Zheng G: Notch1 activation contributes to tumor cell growth and proliferation in human hepatocellular carcinoma HepG2 and SMMC7721 cells. Int J Oncol. 41:1773–1781. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bolós V, Mira E, Martínez-Poveda B, Luxán G, Cañamero M, Martínez-A C, Mañes S and de la Pompa JL: Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res. 15:R542013. View Article : Google Scholar : PubMed/NCBI | |
Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S and Egan SE: Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 33:1223–1229. 2008.PubMed/NCBI | |
Yuan X, Wu H, Xu H, Han N, Chu Q, Yu S, Chen Y and Wu K: Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep. 5:103382015. View Article : Google Scholar : PubMed/NCBI | |
Hijioka H, Setoguchi T, Miyawaki A, Gao H, Ishida T, Komiya S and Nakamura N: Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 36:817–822. 2010.PubMed/NCBI | |
Ai Q, Ma X, Huang Q, Liu S, Shi T, Zhang C, Zhu M, Zhang Y, Wang B, Ni D, et al: High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma. PLoS One. 7:e350222012. View Article : Google Scholar : PubMed/NCBI | |
Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ, Brafford PA, Xiao M, Himes B, Zabierowski SE, et al: Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 69:5312–5320. 2009. View Article : Google Scholar : PubMed/NCBI | |
Howard JD, Moriarty WF, Park J, Riedy K, Panova IP, Chung CH, Suh KY, Levchenko A and Alani RM: Notch signaling mediates melanoma-endothelial cell communication and melanoma cell migration. Pigment Cell Melanoma Res. 26:697–707. 2013. View Article : Google Scholar : PubMed/NCBI | |
Müller CS: Notch signaling and malignant melanoma. Adv Exp Med Biol. 727:258–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X and Herlyn M: Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 66:4182–4190. 2006. View Article : Google Scholar : PubMed/NCBI | |
Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M and Liu ZJ: Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest. 115:3166–3176. 2005. View Article : Google Scholar : PubMed/NCBI | |
Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P and Santucci M: Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol. 19:246–254. 2006. View Article : Google Scholar | |
Akhurst RJ and Derynck R: TGF-beta signaling in cancer - a double-edged sword. Trends Cell Biol. 11:S44–S51. 2001.PubMed/NCBI | |
Trapani JA: The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell. 8:349–350. 2005. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li MO, Wan YY, Sanjabi S, Robertson AK and Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 24:99–146. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF and Blessing M: Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 173:6526–6531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G and Wahl SM: Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 198:1875–1886. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pyzik M and Piccirillo CA: TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol. 82:335–346. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oft M, Heider KH and Beug H: TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 8:1243–1252. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhang HJ, Wang HY, Zhang HT, Su JM, Zhu J, Wang HB, Zhou WY, Zhang H, Zhao MC, Zhang L and Chen XF: Transforming growth factor-β1 promotes lung adenocarcinoma invasion and metastasis by epithelial-to-mesenchymal transition. Mol Cell Biochem. 355:309–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Chung YH, Kim JA and Lee YS, Lee D, Jang MK, Kim KM, Lim YS, Lee HC and Lee YS: Transforming growth factor beta 1 overexpression is closely related to invasiveness of hepatocellular carcinoma. Oncology. 82:11–18. 2012. View Article : Google Scholar | |
Teraoka H, Sawada T, Yamashita Y, Nakata B, Ohira M, Ishikawa T, Nishino H and Hirakawa K: TGF-β1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion. Int J Oncol. 19:709–715. 2001.PubMed/NCBI | |
Malaponte G, Zacchia A, Bevelacqua Y, Marconi A, Perrotta R, Mazzarino MC, Cardile V and Stivala F: Co-regulated expression of matrix metalloproteinase-2 and transforming growth factor-β in melanoma development and progression. Oncol Rep. 24:81–87. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P and Ray A: Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest. 116:996–1004. 2006. View Article : Google Scholar : PubMed/NCBI | |
Samon JB, Champhekar A, Minter LM, Telfer JC, Miele L, Fauq A, Das P, Golde TE and Osborne BA: Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood. 112:1813–1821. 2008. View Article : Google Scholar | |
Zhou J, Jain S, Azad AK, Xu X, Yu HC, Xu Z, Godbout R and Fu Y: Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal. 28:838–849. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zavadil J, Cermak L, Soto-Nieves N and Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U and Ibáñez CF: Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 163:723–728. 2003. View Article : Google Scholar : PubMed/NCBI | |
Klüppel M and Wrana JL: Turning it up a Notch: Cross-talk between TGF beta and Notch signaling. BioEssays. 27:115–118. 2005. View Article : Google Scholar | |
Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M, Ciuffetta A, Colantoni S, Vacca A, Frati L, et al: Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol. 186:6199–6206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Burghardt S, Claass B, Erhardt A, Karimi K and Tiegs G: Hepatocytes induce Foxp3+ regulatory T cells by Notch signaling. J Leukoc Biol. 96:571–577. 2014. View Article : Google Scholar | |
Mota C, Nunes-Silva V, Pires AR, Matoso P, Victorino RM, Sousa AE and Caramalho I: Delta-like 1-mediated Notch signaling enhances the in vitro conversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells. J Immunol. 193:5854–5862. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trehanpati N, Shrivastav S, Shivakumar B, Khosla R, Bhardwaj S, Chaturvedi J, Sukriti, Kumar B, Bose S, Mani Tripathi D, et al: Analysis of Notch and TGF-β signaling expression in different stages of disease progression during hepatitis B virus infection. Clin Transl Gastroenterol. 3:e232012. View Article : Google Scholar | |
Luo X, Tan H, Zhou Y, Xiao T, Wang C and Li Y: Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell Int. 13:342013. View Article : Google Scholar : PubMed/NCBI | |
Josien H: Recent advances in the development of gamma-secretase inhibitors. Curr Opin Drug Discov Devel. 5:513–525. 2002.PubMed/NCBI | |
Cardile V, Frasca G, Libra M, Caggia S, Umezawa K, Panico A and Malaponte G: Dehydroxymethylepoxyquinomicin inhibits expression and production of inflammatory mediators in interleukin-1beta-induced human chondrocytes. Cell Physiol Biochem. 25:543–550. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ohnuki H and Tosato G: Notch and TGFβ: Functional partners facilitating tumor progression. OncoImmunology. 3:e290292014. View Article : Google Scholar | |
Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, et al: Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 64:5270–5282. 2004. View Article : Google Scholar : PubMed/NCBI | |
Perrot CY, Javelaud D and Mauviel A: Insights into the transforming growth factor-β signaling pathway in cutaneous melanoma. Ann Dermatol. 25:135–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang Y, Li D and Jing S: Notch and TGF-β/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour Biol. 35:379–385. 2014. View Article : Google Scholar | |
Zhang HY and Sun H: Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 287:91–97. 2010. View Article : Google Scholar | |
Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, McNally B, Lin L, Zhou P, Zuo T, et al: Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 16:336–346. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zuo T, Liu R, Zhang H, Chang X and Liu Y, Wang L, Zheng P and Liu Y: FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 117:3765–3773. 2007.PubMed/NCBI | |
Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S and Chen W: A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol. 9:632–640. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brody JR, Costantino CL, Berger AC, Sato T, Lisanti MP, Yeo CJ, Emmons RV and Witkiewicz AK: Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle. 8:1930–1934. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Rowell EA, Thomas RM, Hancock WW and Wells AD: Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem. 281:36828–36834. 2006. View Article : Google Scholar | |
Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, Kalofonos HP and Mouzaki A: Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res. 31:1677–1683. 2011.PubMed/NCBI | |
Franco-Molina MA, Miranda-Hernández DF, Mendoza- Gamboa E, Zapata-Benavides P, Coronado-Cerda EE, Sierra- Rivera CA, Saavedra-Alonso S, Taméz-Guerra RS and Rodríguez-Padilla C: Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment. OncoTargets Ther. 9:243–253. 2016. View Article : Google Scholar | |
Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR and Neurath MF: Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 172:5149–5153. 2004. View Article : Google Scholar | |
Selvaraj RK and Geiger TL: A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J Immunol. 178:7667–7677. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo X and Wang XF: Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19:71–88. 2009. View Article : Google Scholar | |
Wang Y, Shen RW, Han B, Li Z, Xiong L, Zhang FY, Cong BB and Zhang B: Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats. World J Gastroenterol. 23:2330–2336. 2017. View Article : Google Scholar : | |
Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, et al: miR-342-5p is a notch downstream molecule and regulates multiple angiogenic pathways including notch, vascular endothelial growth factor and transforming growth factor β signaling. J Am Heart Assoc. 5:e0030422016. View Article : Google Scholar | |
Kared H, Adle-Biassette H, Foïs E, Masson A, Bach JF, Chatenoud L, Schneider E and Zavala F: Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity. 25:823–834. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stockhausen MT, Sjö J and Axelson H: Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res. 310:218–228. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pisklakova A, Grigson E, Ozerova M, Chen F, Sullivan DM and Nefedova Y: Anti-myeloma effect of pharmacological inhibition of Notch/gamma-secretase with RO4929097 is mediated by modulation of tumor microenvironment. Cancer Biol Ther. 17:477–485. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tas F, Karabulut S, Yasasever CT and Duranyildiz D: Serum transforming growth factor-beta 1 (TGF-β1) levels have diagnostic, predictive, and possible prognostic roles in patients with melanoma. Tumour Biol. 35:7233–7237. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takizawa T, Ochiai W, Nakashima K and Taga T: Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 31:5723–5731. 2003. View Article : Google Scholar : PubMed/NCBI | |
Asnaghi L, Ebrahimi KB, Schreck KC, Bar EE, Coonfield ML, Bell WR, Handa J, Merbs SL, Harbour JW and Eberhart CG: Notch signaling promotes growth and invasion in uveal melanoma. Clin Cancer Res. 18:654–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB and Ball DW: Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 61:3200–3205. 2001.PubMed/NCBI | |
Thélu J, Rossio P and Favier B: Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2:72002. View Article : Google Scholar : PubMed/NCBI | |
Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, Pellerito S, Pimpinelli N, Santucci M and Massi D: Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. Mod Pathol. 21:316–325. 2008. View Article : Google Scholar : PubMed/NCBI | |
Banerjee D, Hernandez SL, Garcia A, Kangsamaksin T, Sbiroli E, Andrews J, Forrester LA, Wei N, Kadenhe-Chiweshe A, Shawber CJ, et al: Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 75:1592–1602. 2015. View Article : Google Scholar : PubMed/NCBI | |
Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, Frati L, Paolo Dotto G, Gulino A and Screpanti I: Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 305:343–354. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takebe N, Nguyen D and Yang SX: Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther. 141:140–149. 2014. View Article : Google Scholar : | |
Olsauskas-Kuprys R, Zlobin A and Osipo C: Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 6:943–955. 2013.PubMed/NCBI | |
Ji X, Wang Z, Geamanu A, Sarkar FH and Gupta SV: Inhibition of cell growth and induction of apoptosis in non-small cell lung cancer cells by delta-tocotrienol is associated with notch-1 down-regulation. J Cell Biochem. 112:2773–2783. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Wu L, Wang L and Xin X: Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780. Biochem Biophys Res Commun. 393:144–149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zhu X and Lu Q: Antiproliferative effects of γ-secretase inhibitor, a Notch signalling inhibitor, in multiple myeloma cells and its molecular mechanism of action. J Int Med Res. 41:1017–1026. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T and Cao X: Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63:8323–8329. 2003.PubMed/NCBI | |
Wang L, Qin H, Chen B, Xin X, Li J and Han H: Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer. 17:1283–1292. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miranda-Hernández DF, Franco-Molina MA, Mendoza-Gamboa E, Zapata-Benavides P, Sierra-Rivera CA, Coronado-Cerda EE, Rosas-Taraco AG, Taméz-Guerra RS and Rodríguez-Padilla C: Expression of Foxp3, CD25 and IL-2 in the B16F10 cancer cell line and melanoma is correlated with tumor growth in mice. Oncol Lett. 6:1195–1200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Del Papa B, Sportoletti P, Cecchini D, Rosati E, Balucani C, Baldoni S, Fettucciari K, Marconi P, Martelli MF, Falzetti F and Di Ianni M: Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J Immunol. 43:182–187. 2013. View Article : Google Scholar | |
Rao P and Kadesch T: The intracellular form of notch blocks transforming growth factor beta-mediated growth arrest in Mv1Lu epithelial cells. Mol Cell Biol. 23:6694–6701. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sun XF, Sun XH, Cheng SF, Wang JJ, Feng YN, Zhao Y, Yin S, Hou ZM, Shen W and Zhang XF: Interaction of the transforming growth factor-β and Notch signaling pathways in the regulation of granulosa cell proliferation. Reprod Fertil Dev. 28:1873–1881. 2016. View Article : Google Scholar | |
Masuda S, Kumano K, Shimizu K, Imai Y, Kurokawa M, Ogawa S, Miyagishi M, Taira K, Hirai H and Chiba S: Notch1 oncoprotein antagonizes TGF-beta/Smad-mediated cell growth suppression via sequestration of coactivator p300. Cancer Sci. 96:274–282. 2005. View Article : Google Scholar : PubMed/NCBI | |
Asano N, Watanabe T, Kitani A, Fuss IJ and Strober W: Notch1 signaling and regulatory T cell function. J Immunol. 180:2796–2804. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Kitani A, Stuelten C, McGrady G, Fuss I and Strober W: Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity. 33:313–325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 9:194–202. 2008. View Article : Google Scholar |