Role of Sirtuin 1 in the pathogenesis of ocular disease (Review)
- Authors:
- Mengwen Zhou
- Jing Luo
- Huiming Zhang
-
Affiliations: Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China, Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China - Published online on: April 16, 2018 https://doi.org/10.3892/ijmm.2018.3623
- Pages: 13-20
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Portela A and Esteller M: Epigenetic modifications and human disease. Nat Biotechnol. 28:1057–1068. 2010. View Article : Google Scholar : PubMed/NCBI | |
Glozak MA, Sengupta N, Zhang X and Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gray SG and Ekström TJ: The human histone deacetylase family. Exp Cell Res. 262:75–83. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Cueto MA, Asselbergs F and Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 277:25748–25755. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feldman JL, Dittenhafer-Reed KE and Denu JM: Sirtuin catalysis and regulation. J Biol Chem. 287:42419–42427. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sauve AA, Wolberger C, Schramm VL and Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem. 75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI | |
Davenport AM, Huber FM and Hoelz A: Structural and functional analysis of human SIRT1. J Mol Biol. 426:526–541. 2014. View Article : Google Scholar : | |
Yamakuchi M: MicroRNA regulation of SIRT1. Front Physiol. 3:682012. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W and Scrable H: Phosphorylation regulates SIRT1 function. PLoS One. 3:e40202008. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K and Bai W: SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 9:1253–1262. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, Wang H, Gu W, Roeder RG and Zhu WG: Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA. 108:1925–1930. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD and Snyder SH: GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol. 12:1094–1100. 2010. View Article : Google Scholar : PubMed/NCBI | |
Caito S, Rajendrasozhan S, Cook S, Chung S, Yao H, Friedman AE, Brookes PS and Rahman I: SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 24:3145–3159. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tanno M, Sakamoto J, Miura T, Shimamoto K and Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 282:6823–6832. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L and Boeke JD: The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:2888–2902. 1995. View Article : Google Scholar : PubMed/NCBI | |
Guarente L: Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021–1026. 2000.PubMed/NCBI | |
Ozawa Y, Kubota S, Narimatsu T, Yuki K, Koto T, Sasaki M and Tsubota K: Retinal aging and sirtuins. Ophthalmic Res. 44:199–203. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mimura T, Kaji Y, Noma H, Funatsu H and Okamoto S: The role of SIRT1 in ocular aging. Exp Eye Res. 116:17–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balaiya S, Abu-Amero KK, Kondkar AA and Chalam KV: Sirtuins expression and their role in retinal diseases. Oxid Med Cell Longev. 2017:31875942017. View Article : Google Scholar : PubMed/NCBI | |
McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM and Lemieux M: The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 23:38–54. 2003. View Article : Google Scholar : | |
Kamel C, Abrol M, Jardine K, He X and McBurney MW: SirT1 fails to affect p53-mediated biological functions. Aging Cell. 5:81–88. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW and Chua KF: Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 100:10794–10799. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G and Bremner R: Division and apoptosis of E2f-deficient retinal progenitors. Nature. 462:925–929. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jaliffa C, Ameqrane I, Dansault A, Leemput J, Vieira V, Lacassagne E, Provost A, Bigot K, Masson C, Menasche M and Abitbol M: Sirt1 involvement in rd10 mouse retinal degeneration. Invest Ophthalmol Vis Sci. 50:3562–3572. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alves LF, Fernandes BF, Burnier JV, Mansure JJ, Maloney S, Odashiro AN, Antecka E, De Souza DF and Burnier MN Jr: Expression of SIRT1 in ocular surface squamous neoplasia. Cornea. 31:817–819. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maloney SC, Antecka E, Odashiro AN, Fernandes BF, Doyle M, Lim LA, Katib YA and Miguel NB Jr: Expression of SIRT1 and DBC1 in developing and adult retinas. Stem Cells Int. 2012:9081832012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L and Xie L: Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci. 54:3806–3814. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Sheng M, Liu Y, Wang P, Chen Y, Chen L, Wang W and Li B: Expression of SIRT1 and oxidative stress in diabetic dry eye. Int J Clin Exp Pathol. 8:7644–7653. 2015.PubMed/NCBI | |
An J, Chen X, Chen W, Liang R, Reinach PS, Yan D and Tu L: MicroRNA expression profile and the Role of miR-204 in corneal wound healing. Invest Ophthalmol Vis Sci. 56:3673–3683. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Wang Y, Zhao X, Chen P and Xie L: MicroRNA-204-5p-mediated regulation of SIRT1 contributes to the delay of epithelial cell cycle traversal in diabetic corneas. Invest Ophthalmol Vis Sci. 56:1493–1504. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao X, Wu X, Dai Y, Chen P and Xie L: microRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes. 65:2020–2031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hodge WG, Whitcher JP and Satariano W: Risk factors for age-related cataracts. Epidemiol Rev. 17:336–346. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Liu Y, Ge J, Wang X, Liu L, Bu Z and Liu P: Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol Vis. 16:1467–1474. 2010.PubMed/NCBI | |
Zheng T and Lu Y: SIRT1 protects human lens epithelial cells against oxidative stress by Inhibiting p53-dependent apoptosis. Curr Eye Res. 41:1068–1075. 2016. View Article : Google Scholar | |
Doganay S, Borazan M, Iraz M and Cigremis Y: The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res. 31:147–153. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin TJ, Peng CH, Chiou SH, Liu JH, Lin-Chung-Woung, Tsai CY, Chuang JH and Chen SJ: Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract. J Cataract Refract Surg. 37:1270–1274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng T and Lu Y: Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans. Curr Eye Res. 36:449–455. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kondo A, Goto M, Mimura T and Matsubara M: Silent information regulator T1 in aqueous humor of patients with cataract. Clin Ophthalmol. 10:307–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang L, Zhao W, Zhang G, Wu J and Guan H: Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res. 135:102–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
van Lookeren Campagne M, LeCouter J, Yaspan BL and Ye W: Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 232:151–164. 2014. View Article : Google Scholar | |
Chen Z, Zhai Y, Zhang W, Teng Y and Yao K: Single nucleotide polymorphisms of the sirtuin 1 (SIRT1) gene are associated with age-related macular degeneration in Chinese han individuals: A case-control pilot study. Medicine (Baltimore). 94:e22382015. View Article : Google Scholar | |
Maloney SC, Antecka E, Granner T, Fernandes B, Lim LA, Orellana ME and Burnier MN Jr: Expression of SIRT1 in choroidal neovascular membranes. Retina. 33:862–866. 2013. View Article : Google Scholar | |
Peng CH, Chang YL, Kao CL, Tseng LM, Wu CC, Chen YC, Tsai CY, Woung LC, Liu JH, Chiou SH and Chen SJ: SirT1-a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors. 10:6172–6194. 2010. View Article : Google Scholar | |
Peng CH, Cherng JY, Chiou GY, Chen YC, Chien CH, Kao CL, Chang YL, Chien Y, Chen LK, Liu JH, et al: Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials. 32:9077–9088. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya S, Chaum E, Johnson DA and Johnson LR: Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci. 53:8350–8366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E and Berinstein DM: Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14:3442016. View Article : Google Scholar | |
Zhuge CC, Xu JY, Zhang J, Li W, Li P, Li Z, Chen L, Liu X, Shang P, Xu H, et al: Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. Invest Ophthalmol Vis Sci. 55:4628–4638. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jackson MD, Schmidt MT, Oppenheimer NJ and Denu JM: Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem. 278:50985–50998. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Lauer TW, Sick A, Hackett SF and Campochiaro PA: Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem. 282:22414–22425. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Liu C, Wang F and Wang H: SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway. Braz J Med Biol Res. 46:659–669. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ban N, Ozawa Y, Inaba T, Miyake S, Watanabe M, Shinmura K and Tsubota K: Light-dark condition regulates sirtuin mRNA levels in the retina. Exp Gerontol. 48:1212–1217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chou WW, Chen KC, Wang YS, Wang JY, Liang CL and Juo SH: The role of SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment epithelial cells. Toxicol In Vitro. 27:1728–1736. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kubota S, Kurihara T, Ebinuma M, Kubota M, Yuki K, Sasaki M, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K: Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. Am J Pathol. 177:1725–1731. 2010. View Article : Google Scholar : PubMed/NCBI | |
Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, et al: SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21:2644–2658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Potente M and Dimmeler S: Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle. 7:2117–2122. 2008. View Article : Google Scholar : PubMed/NCBI | |
Balaiya S, Khetpal V and Chalam KV: Hypoxia initiates sirtuin1-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2α. Mol Vis. 18:114–120. 2012. | |
Nagineni CN, Raju R, Nagineni KK, Kommineni VK, Cherukuri A, Kutty RK, Hooks JJ and Detrick B: Resveratrol suppresses expression of VEGF by human retinal pigment epithelial cells: Potential nutraceutical for age-related macular degeneration. Aging Dis. 5:88–100. 2014.PubMed/NCBI | |
Balaiya S, Murthy RK and Chalam KV: Resveratrol inhibits proliferation of hypoxic choroidal vascular endothelial cells. Mol Vis. 19:2385–2392. 2013.PubMed/NCBI | |
Zhang H, He S, Spee C, Ishikawa K and Hinton DR: SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by resveratrol and its relevance to choroidal neovascularization. Cytokine. 76:549–552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan AA, Dace DS, Ryazanov AG, Kelly J and Apte RS: Resveratrol regulates pathologic angiogenesis by a eukaryotic elongation factor-2 kinase-regulated pathway. Am J Pathol. 177:481–492. 2010. View Article : Google Scholar : | |
Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L and Siebert C: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 329:977–986. 1993. View Article : Google Scholar : PubMed/NCBI | |
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P and Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 353:2643–2653. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mortuza R, Chen S, Feng B, Sen S and Chakrabarti S: High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One. 8:e545142013. View Article : Google Scholar : PubMed/NCBI | |
Kowluru RA, Santos JM and Zhong Q: Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Invest Ophthalmol Vis Sci. 55:5653–5660. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kowluru RA, Mishra M and Kumar B: Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Exp Eye Res. 147:72–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kubota S, Ozawa Y, Kurihara T, Sasaki M, Yuki K, Miyake S, Noda K, Ishida S and Tsubota K: Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Invest Ophthalmol Vis Sci. 52:9142–9148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, Jin H, He Y, Gu Q and Xu X: Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes. 61:217–228. 2012. View Article : Google Scholar | |
Zhang E, Guo Q, Gao H, Xu R, Teng S and Wu Y: Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/p53/p21 pathway. PLoS One. 10:e01438142015. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H and Zheng Z: miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia. 59:644–654. 2016. View Article : Google Scholar | |
Zhao S, Li J, Wang N, Zheng B, Li T, Gu Q, Xu X and Zheng Z: Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway. Mol Med Rep. 12:6112–6118. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simó R and Hernández C: Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res. 48:160–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vujosevic S and Simó R: Local and systemic inflammatory biomarkers of diabetic retinopathy: An integrative approach. Invest Ophthalmol Vis Sci. 58:BIO68–BIO75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mishra M, Flaga J and Kowluru RA: Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy. J Cell Physiol. 231:1709–1718. 2016. View Article : Google Scholar | |
Mortuza R, Feng B and Chakrabarti S: SIRT1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1. J Cell Mol Med. 19:1857–1867. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Yang K, Wang F, Zhou L, Hu Y, Tang M, Zhang S, Jin S, Zhang J, Wang J, et al: The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Exp Eye Res. 151:203–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Lin YU and Liu XIN: Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med. 11:257–262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mortuza R, Feng B and Chakrabarti S: miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia. 57:1037–1046. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Smith LE: Retinopathy of prematurity. Angiogenesis. 10:133–140. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Michan S, Juan AM, Hurst CG, Hatton CJ, Pei DT, Joyal JS, Evans LP, Cui Z, Stahl A, et al: Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis. 16:985–992. 2013. View Article : Google Scholar : PubMed/NCBI | |
Michan S, Juan AM, Hurst CG, Cui Z, Evans LP, Hatton CJ, Pei DT, Ju M, Sinclair DA, Smith LE and Chen J: Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. PLoS One. 9:e850312014. View Article : Google Scholar : PubMed/NCBI | |
Fischer D and Leibinger M: Promoting optic nerve regeneration. Prog Retin Eye Res. 31:688–701. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang BL and Chua CE: SIRT1 and neuronal diseases. Mol Aspects Med. 29:187–200. 2008. View Article : Google Scholar | |
Kim SH, Park JH, Kim YJ and Park KH: The neuroprotective effect of resveratrol on retinal ganglion cells after optic nerve transection. Mol Vis. 19:1667–1676. 2013.PubMed/NCBI | |
Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM and Zhang X: Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis. 18:786–799. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zuo L, Khan RS, Lee V, Dine K, Wu W and Shindler KS: SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 54:5097–5102. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balaiya S, Ferguson LR and Chalam KV: Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia. Invest Ophthalmol Vis Sci. 53:4315–4322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Sung MS, Heo H, Lee JH and Park SW: Mangiferin protects retinal ganglion cells in ischemic mouse retina via SIRT1. Curr Eye Res. 41:844–855. 2016. | |
Shindler KS, Ventura E, Rex TS, Elliott P and Rostami A: SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 48:3602–3609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M and Shindler KS: Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 3:842012. View Article : Google Scholar : | |
Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC and Rostami A: Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 30:328–339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Khan RS, Fonseca-Kelly Z, Callinan C, Zuo L, Sachdeva MM and Shindler KS: SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells. Front Cell Neurosci. 6:632012. View Article : Google Scholar | |
Khan RS, Dine K, Das Sarma J and Shindler KS: SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease. Acta Neuropathol Commun. 2:32014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li H, Cao Y, Zhang M and Wei S: Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep. 12:6962–6968. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Suhler EB and Rosenbaum JT: The future of uveitis treatment. Ophthalmology. 121:365–376. 2014. View Article : Google Scholar : | |
Kubota S, Kurihara T, Mochimaru H, Satofuka S, Noda K, Ozawa Y, Oike Y, Ishida S and Tsubota K: Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappaB activation. Invest Ophthalmol Vis Sci. 50:3512–3519. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rossi S, Di Filippo C, Gesualdo C, Testa F, Trotta MC, Maisto R, Ferraro B, Ferraraccio F, Accardo M, Simonelli F and D'Amico M: Interplay between Intravitreal RvD1 and Local Endogenous Sirtuin-1 in the protection from endotoxin-induced uveitis in rats. Mediators Inflamm. 2015:1264082015. View Article : Google Scholar : PubMed/NCBI | |
Gardner PJ, Joshi L, Lee RW, Dick AD, Adamson P and Calder VL: SIRT1 activation protects against autoimmune T cell-driven retinal disease in mice via inhibition of IL-2/Stat5 signaling. J Autoimmun. 42:117–129. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gardner PJ, Yazid S, Chu CJ, Copland DA, Adamson P, Dick AD and Calder VL: TNFα regulates SIRT1 cleavage during ocular autoimmune disease. Am J Pathol. 185:1324–1333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anekonda TS and Adamus G: Resveratrol prevents antibody-induced apoptotic death of retinal cells through upregulation of Sirt1 and Ku70. BMC Res Notes. 1:1222008. View Article : Google Scholar : PubMed/NCBI | |
Bola C, Bartlett H and Eperjesi F: Resveratrol and the eye: Activity and molecular mechanisms. Graefes Arch Clin Exp Ophthalmol. 252:699–713. 2014. View Article : Google Scholar : PubMed/NCBI |