1
|
Dorfmüller P, Humbert M, Capron F and
Müller KM: Pathology and aspects of pathogenesis in pulmonary
arterial hypertension. Sarcoidosis Vasc Diffuse Lung Dis. 20:9–19.
2003.PubMed/NCBI
|
2
|
Barst RJ, McGoon M, Torbicki A, Sitbon O,
Krowka MJ, Olschewski H and Gaine S: Diagnosis and differential
assessment of pulmonary arterial hypertension. J Am Coll Cardiol.
43(Suppl 12): 40S–47S. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Farber HW and Loscalzo J: Pulmonary
arterial hypertension. NEngl J Med. 351:1655–1665. 2004. View Article : Google Scholar
|
4
|
Schermuly RT, Ghofrani HA, Wilkins MR and
Grimminger F: Mechanisms of disease: Pulmonary arterial
hypertension. Nat Rev Cardiol. 8:443–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guignabert C, Tu L, Le Hiress M, Ricard N,
Sattler C, Seferian A, Huertas A, Humbert M and Montani D:
Pathogenesis of pulmonary arterial hypertension: Lessons from
cancer. Eur Respir Rev. 22:543–551. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saadjian AY, Paganelli F, Gaubert ML, Levy
S and Guieu RP: Adenosine plasma concentration in pulmonary
hypertension. Cardiovasc Res. 43:228–236. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Konduri GG, Woodard LL, Mukhopadhyay A and
Deshmukh DR: Adenosine is a pulmonary vasodilator in newborn lambs.
Am Rev Respir Dis. 146:670–676. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pearl RG: Adenosine produces pulmonary
vasodilation in the perfused rabbit lung via an adenosine A2
receptor. Anesth Analg. 79:46–51. 1994. View Article : Google Scholar : PubMed/NCBI
|
9
|
McCormack DG, Clarke B and Barnes PJ:
Characterization of adenosine receptors in human pulmonary
arteries. Am J Physiol. 256:H41–H46. 1989.PubMed/NCBI
|
10
|
Alencar AK, Pereira SL, Montagnoli TL,
Maia RC, Kümmerle AE, Landgraf SS, Caruso-Neves C, Ferraz EB, Tesch
R, Nascimento JH, et al: Beneficial effects of a novel agonist of
the adenosine A2A receptor on monocrotaline-induced
pulmonary hypertension in rats. Br J Pharmacol. 169:953–962. 2013.
View Article : Google Scholar :
|
11
|
Xu MH, Gong YS, Su MS, Dai ZY, Dai SS, Bao
SZ, Li N, Zheng RY, He JC, Chen JF and Wang XT: Absence of the
adenosine A2A receptor confers pulmonary arterial
hypertension and increased pulmonary vascular remodeling in mice. J
Vasc Res. 48:171–183. 2011. View Article : Google Scholar
|
12
|
Shang P, He ZY, Chen JF, Huang SY, Liu BH,
Liu HX and Wang XT: Absence of the adenosine A2A
receptor confers pulmonary arterial hypertension through RhoA/ROCK
signaling pathway in mice. J Cardiovasc Pharmacol. 66:569–575.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Alencar AK, Pereira SL, da Silva FE,
Mendes LV, Cunha Vdo M, Lima LM, Montagnoli TL, Caruso-Neves C,
Ferraz EB, Tesch R, et al: N-acylhydrazone derivative ameliorates
monocrotaline-induced pulmonary hypertension through the modulation
of adenosine AA2R activity. Int J Cardiol. 173:154–162. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang X, Zou L, Yu X, Chen M, Guo R, Cai
H, Yao D, Xu X, Chen Y, Ding C, et al: Salidroside attenuates
chronic hypoxia-induced pulmonary hypertension via adenosine
A2A receptor related mitochondria-dependent apoptosis
pathway. J Mol Cell Cardiol. 82:153–166. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zernecke A, Schober A, Bot I, von
Hundelshausen P, Liehn EA, Möpps B, Mericskay M, Gierschik P,
Biessen EA and Weber C: SDF-1alpha/CXCR4 axis is instrumental in
neointimal hyperplasia and recruitment of smooth muscle progenitor
cells. Circ Res. 96:784–791. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schober A: Chemokines in vascular
dysfunction and remodeling. Arterioscler Thromb Vasc Biol.
28:1950–1959. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Young KC, Torres E, Hatzistergos KE, Hehre
D, Suguihara C and Hare JM: Inhibition of the SDF-1/CXCR4 axis
attenuates neonatal hypoxia-induced pulmonary hypertension. Circ
Res. 104:1293–1301. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yu L and Hales CA: Effect of chemokine
receptor CXCR4 on hypoxia-induced pulmonary hypertension and
vascular remodeling in rats. Respir Res. 12:212011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Farkas D, Kraskauskas D, Drake JI,
Alhussaini AA, Kraskauskiene V, Bogaard HJ, Cool CD, Voelkel NF and
Farkas L: CXCR4 inhibition ameliorates severe obliterative
pulmonary hypertension and accumulation of C-kit+ cells
in rats. PLoS One. 9:e898102014. View Article : Google Scholar
|
20
|
Wei L, Zhang B, Cao W, Xing H, Yu X and
Zhu D: Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial
smooth muscle cell proliferation and cell cycle progression via
PI3K/Akt pathway under hypoxia. J Recept Signal Transduct Res.
35:329–339. 2015. View Article : Google Scholar
|
21
|
By Y, Durand-Gorde JM, Condo J, Lejeune
PJ, Fenouillet E, Guieu R and Ruf J: Monoclonal antibody-assisted
stimulation of adenosine A2A receptors induces
simultaneous downregulation of CXCR4 and CCR5 on CD4+
T-cells. Hum Immunol. 71:1073–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nolan T, Hands RE and Bustin SA:
Quantification of mRNA using real-time RT-PCR. Nat Protoc.
1:1559–1582. 2006. View Article : Google Scholar
|
23
|
Ji JF, He BP, Dheen ST and Tay SS:
Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CR1 in
neural progenitor cells isolated from the subventricular zone of
the adult rat brain. Neurosci Lett. 355:236–240. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Y, Deng Y and Zhou GQ:
SDF-1alpha/CXCR4-mediated migration of systemically transplanted
bone marrow stromal cells towards ischemic brain lesion in a rat
model. Brain Res. 1195:104–112. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dahal BK, Heuchel R, Pullamsetti SS,
Wilhelm J, Ghofrani HA, Weissmann N, Seeger W, Grimminger F and
Schermuly RT: Hypoxic pulmonary hypertension in mice with
constitutively active platelet-derived growth factor receptor-β.
Pulm Circ. 1:259–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jie W, Wang X, Zhang Y, Guo J, Kuang D,
Zhu P, Wang G and Ao Q: SDF-1α/CXCR4 axis is involved in
glucose-potentiated proliferation and chemotaxis in rat vascular
smooth muscle cells. Int J Exp Pathol. 91:436–444. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pan CH, Chen CW, Sheu MJ and Wu CH:
Salvianolic acid B inhibits SDF-1α-stimulated cell proliferation
and migration of vascular smooth muscle cells by suppressing CXCR4
receptor. Vascul Pharmacol. 56:98–105. 2012. View Article : Google Scholar
|
28
|
Hong KW, Shin HK, Kim HH, Choi JM, Rhim BY
and Lee WS: Metabolism of cAMP to adenosine: Role in vasodilation
of rat pial artery in response to hypotension. Am J Physiol.
276:H376–H382. 1999.PubMed/NCBI
|
29
|
Carroll MA, Doumad AB, Li J, Cheng MK,
Falck JR and McGiff JC: Adenosine 2A receptor vasodilation of rat
preglomerular microvessels is mediated by EETs that activate the
cAMP/PKA pathway. Am J Physiol Renal Physiol. 291:F155–F161. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Humbert M, Morrell NW, Archer SL, Stenmark
KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O,
Voelkel NF and Rabinovitch M: Cellular and molecular pathobiology
of pulmonary arterial hypertension. J Am Coll Cardiol. 43(Suppl
12): 13S–24S. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Morrell NW, Adnot S, Archer SL, Dupuis J,
Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA,
Weissmann N, et al: Cellular and molecular basis of pulmonary
arterial hypertension. J Am Coll Cardiol. 54(Suppl 1): S20–S31.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Stenmark KR, Fagan KA and Frid MG:
Hypoxia-induced pulmonary vascular remodeling: Cellular and
molecular mechanisms. Circ Res. 99:675–691. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kato M and Staub NC: Response of small
pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res.
19:426–440. 1966. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hein TW and Kuo L: cAMP-independent
dilation of coronary arterioles to adenosine: Role of nitric oxide,
G proteins, and K(ATP) channels. Circ Res. 85:634–642. 1999.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Murphy K, Gerzanich V, Zhou H, Ivanova S,
Dong Y, Hoffman G, West GA, Winn HR and Simard JM:
Adenosine-A2A receptor down-regulates cerebral smooth
muscle L-type Ca2+ channel activity via protein tyrosine
phosphatase, not cAMP-dependent protein kinase. Mol Pharmacol.
64:640–649. 2003. View Article : Google Scholar : PubMed/NCBI
|