Multi‑layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‑catenin signaling activation (Review)
- Authors:
- Masaru Katoh
-
Affiliations: Department of Omics Network, National Cancer Center, Chuo Ward, Tokyo 104‑0045, Japan - Published online on: May 17, 2018 https://doi.org/10.3892/ijmm.2018.3689
- Pages: 713-725
-
Copyright: © Katoh . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Katoh M and Katoh M: Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med. 40:587–606. 2017.PubMed/NCBI | |
Takeichi M: Dynamic contacts: Rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol. 15:397–410. 2014. View Article : Google Scholar : PubMed/NCBI | |
McCrea PD and Gottardi CJ: Beyond β-catenin: Prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol. 17:55–64. 2016. View Article : Google Scholar | |
Kufe DW: MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar | |
Liu Q, Cheng Z, Luo L, Yang Y, Zhang Z, Ma H, Chen T, Huang X, Lin SY, Jin M, et al: C-terminus of MUC16 activates Wnt signaling pathway through its interaction with β-catenin to promote tumorigenesis and metastasis. Oncotarget. 7:36800–36813. 2016.PubMed/NCBI | |
Klaus A and Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 8:387–398. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vaquero J, Nguyen Ho-Bouldoires TH, Clapéron A and Fouassier L: Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: From signaling regulation to clinical relevance. Oncogene. 36:3067–3079. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 13:4042–4045. 2007. View Article : Google Scholar : PubMed/NCBI | |
Valenta T, Hausmann G and Basler K: The many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lo YH, Noah TK, Chen MS, Zou W, Borras E, Vilar E and Shroyer NF: SPDEF induces quiescence of colorectal cancer cells by changing the transcriptional targets of β-catenin. Gastroenterology. 153:205–218.e8. 2017. View Article : Google Scholar | |
Frescas D and Pagano M: Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: Tipping the scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI | |
Novellasdemunt L, Foglizzo V, Cuadrado L, Antas P, Kucharska A, Encheva V, Snijders AP and Li VSW: USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep. 21:612–627. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoffmeyer K, Junghans D, Kanzler B and Kemler R: Trimethylation and acetylation of β-catenin at Lysine 49 represent key elements in ESC pluripotency. Cell Rep. 18:2815–2824. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L and Virshup DM: Wnt proteins synergize to activate β-catenin signaling. J Cell Sci. 130:1532–1544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herbst A, Jurinovic V, Krebs S, Thieme SE, Blum H, Göke B and Kolligs FT: Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genomics. 15:742014. View Article : Google Scholar | |
Watanabe K, Biesinger J, Salmans ML, Roberts BS, Arthur WT, Cleary M, Andersen B, Xie X and Dai X: Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS One. 9:e923172014. View Article : Google Scholar : PubMed/NCBI | |
Funa NS, Schachter KA, Lerdrup M, Ekberg J, Hess K, Dietrich N, Honoré C, Hansen K and Semb H: β-Catenin regulates primitive streak induction through collaborative interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell. 16:639–652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD and Matei D: β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene. 34:2297–2308. 2015. View Article : Google Scholar | |
Spranger S, Bao R and Gajewski TF: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yun EJ, Zhou J, Lin CJ, Hernandez E, Fazli L, Gleave M and Hsieh JT: Targeting cancer stem cells in castration-resistant prostate cancer. Clin Cancer Res. 22:670–679. 2016. View Article : Google Scholar | |
Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y and Furukawa Y: Involvement of Claudin-1 in the β-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res. 12:469–476. 2001. View Article : Google Scholar | |
Shah KV, Chien AJ, Yee C and Moon RT: CTLA-4 is a direct target of Wnt/β-catenin signaling and is expressed in human melanoma tumors. J Invest Dermatol. 128:2870–2879. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, et al: Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature. 545:238–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaur A, Webster MR and Weeraratna AT: In the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J Cancer. 115:1273–1279. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ravindranath A, Yuen HF, Chan KK, Grills C, Fennell DA, Lappin TR and El-Tanani M: Wnt-β-catenin-Tcf-4 signalling-modulated invasiveness is dependent on osteopontin expression in breast cancer. Br J Cancer. 105:542–551. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gnemmi V, Bouillez A, Gaudelot K, Hémon B, Ringot B, Pottier N, Glowacki F, Villers A, Vindrieux D, Cauffiez C, et al: MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett. 346:225–236. 2014. View Article : Google Scholar : PubMed/NCBI | |
Low KC and Tergaonkar V: Telomerase: Central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 38:426–434. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schön S, Flierman I, Ofner A, Stahringer A, Holdt LM, Kolligs FT and Herbst A: β-catenin regulates NF-κB activity via TNFRSF19 in colorectal cancer cells. Int J Cancer. 135:1800–1811. 2014. View Article : Google Scholar | |
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, Del Sol A, Cosma MP and Lluis F: Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet. 13:e10066822017. View Article : Google Scholar : PubMed/NCBI | |
Ring A, Kim YM and Kahn M: Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev Rep. 10:512–525. 2014. View Article : Google Scholar | |
Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Ramalingam TR: Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med. 18:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Monga SP: β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 148:1294–1310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity. Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 44:694–698. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI | |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI | |
Teo AE, Garg S, Shaikh LH, Zhou J, Karet Frankl FE, Gurnell M, Happerfield L, Marker A, Bienz M, Azizan EA and Brown MJ: Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N Engl J Med. 373:1429–1436. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al: Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network; Asan University; BC Cancer Agency; Brigham and Women's Hospital; Broad Institute; Brown University; Case Western Reserve University; Dana-Farber Cancer Institute; Duke University; et al: Integrated genomic characterization of oesophageal carcinoma. Nature. 541:169–175. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, et al: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 23:703–713. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A, Kugel CH III, Dang VM, Appleton J, O'Connell MP, Cheng P, et al: sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 532:250–254. 2016. View Article : Google Scholar : PubMed/NCBI | |
Webster MR, Kugel CH III and Weeraratna AT: The Wnts of change: How Wnts regulate phenotype switching in melanoma. Biochim Biophys Acta. 1856:244–251. 2015.PubMed/NCBI | |
Bui T, Schade B, Cardiff RD, Aina OH, Sanguin-Gendreau V and Muller WJ: β-Catenin haploinsufficiency promotes mammary tumorigenesis in an ErbB2-positive basal breast cancer model. Proc Natl Acad Sci USA. 114:E707–E716. 2017. View Article : Google Scholar | |
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz JM, Kim J, Lawrence MS, Taylor-Weiner A, Rodriguez-Cuevas S, Rosenberg M, et al: Recurrent and functional regulatory mutations in breast cancer. Nature. 547:55–60. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, Sjöström R, Mahdavi J, Shevtsova A, Ilver D, et al: Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe. 21:376–389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Javaheri A, Kruse T, Moonens K, Mejías-Luque R, Debraekeleer A, Asche CI, Tegtmeyer N, Kalali B, Bach NC, Sieber SA, et al: Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol. 2:161892016. View Article : Google Scholar : PubMed/NCBI | |
Salama NR, Hartung ML and Müller A: Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol. 11:385–399. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamaoka Y and Graham DY: Helicobacter pylori virulence and cancer pathogenesis. Future Oncol. 10:1487–1500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Käbisch R, Mejías-Luque R, Gerhard M and Prinz C: Involvement of Toll-like receptors on Helicobacter pylori-induced immunity. PLoS One. 9:e1048042014. View Article : Google Scholar : PubMed/NCBI | |
McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y and Wells JM: Modelling human development and disease in pluripotent stem cell-derived gastric organoids. Nature. 516:400–404. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek RM Jr, Ottemann K, Orian-Rousseau V, et al: CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. 112:e10046632015. View Article : Google Scholar | |
Song X, Xin N, Wang W and Zhao C: Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 6:35579–35588. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sigal M, Logan CY, Kapalczynska M, Mollenkopf HJ, Berger H, Wiedenmann B, Nusse R, Amieva MR and Meyer TF: Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature. 548:451–455. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katoh M, Hirai M, Sugimura T and Terada M: Cloning, expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family. Oncogene. 13:873–876. 1996.PubMed/NCBI | |
Katoh M, Kirikoshi H, Terasaki H and Shiokawa K: WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT-β-catenin-TCF signaling pathway. Biochem Biophys Res Commun. 289:1093–1098. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jiang X and Cong F: Novel regulation of Wnt signaling at the proximal membrane level. Trends Biochem Sci. 41:773–783. 2016. View Article : Google Scholar : PubMed/NCBI | |
Milne AN, Carneiro F, O'Morain C and Offerhaus GJ: Nature meets nurture: Molecular genetics of gastric cancer. Hum Genet. 126:615–628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leodolter A, Alonso S, González B, Ebert MP, Vieth M, Röcken C, Wex T, Peitz U, Malfertheiner P and Perucho M: Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: Enhanced somatic hypomethylation associates with advanced stage cancer. Clin Transl Gastroenterol. 6:e852015. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA, Lee J, Sano T, Janjigian YY, Fan D and Song S: Gastric adenocarcinoma. Nat Rev Dis Primers. 3:170362017. View Article : Google Scholar : PubMed/NCBI | |
Huh CW, Youn YH, Jung da H, Park JJ, Kim JH and Park H: Early attempts to eradicate Helicobacter pylori after endoscopic resection of gastric neoplasm significantly improve eradication success rates. PLoS One. 11:e01622582016. View Article : Google Scholar : PubMed/NCBI | |
Dang BN and Graham DY: Helicobacter pylori infection and antibiotic resistance: A WHO high priority? Nat Rev Gastroenterol Hepatol. 14:383–384. 2017. View Article : Google Scholar : PubMed/NCBI | |
Osumi H, Fujisaki J, Suganuma T, Horiuchi Y, Omae M, Yoshio T, Ishiyama A, Tsuchida T and Miki K: A significant increase in the pepsinogen I/II ratio is a reliable biomarker for successfulHelicobacter pylori eradication. PLoS One. 12:e01839802017. View Article : Google Scholar | |
Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y and Nakayama T: Effectiveness of Helicobacter pylori eradication in the prevention of primary gastric cancer in healthy asymptomatic people: A systematic review and meta-analysis comparing risk ratio with risk difference. PLoS One. 12:e01833212017. View Article : Google Scholar : PubMed/NCBI | |
Smyth MJ, Ngiow SF, Ribas A and Teng MW: Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar | |
Arzumanyan A, Reis HM and Feitelson MA: Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 13:123–135. 2013. View Article : Google Scholar : PubMed/NCBI | |
Touboul T, Chen S, To CC, Mora-Castilla S, Sabatini K, Tukey RH and Laurent LC: Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes. J Hepatol. 64:1315–1326. 2016. View Article : Google Scholar : PubMed/NCBI | |
Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, Xie Y, Roma G, Donovan A, Marti P, et al: The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol. 18:467–479. 2016. View Article : Google Scholar : PubMed/NCBI | |
Okabe H, Yang J, Sylakowski K, Yovchev M, Miyagawa Y, Nagarajan S, Chikina M, Thompson M, Oertel M, Baba H, et al: Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology. 64:1652–1666. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hu SB, Wang LY, Zhang X, Zhou X, Yang B, Li JH, Xiong J, Liu N, Li Y, et al: Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis. Oncogene. 36:6725–6737. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuijk EW, Rasmussen S, Blokzijl F, Huch M, Gehart H, Toonen P, Begthel H, Clevers H, Geurts AM and Cuppen E: Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure. Sci Rep. 6:221542016. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Yi H, Wang L, Wu W, Wu X and Yu L: RSPOs facilitated HSC activation and promoted hepatic fibrogenesis. Oncotarget. 7:63767–63778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga Y, Osawa Y, Ohtsuki T, Hayashi Y, Yamaji K, Yamane D, Hara M, Munekata K, Tsukiyama-Kohara K, Hishima T, et al: Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Sci Rep. 7:3252017. View Article : Google Scholar | |
Tao J, Xu E, Zhao Y, Singh S, Li X, Couchy G, Chen X, Zucman-Rossi J, Chikina M and Monga SP: Modeling a human hepatocellular carcinoma subset in mice through coexpression of Met and point-mutant β-catenin. Hepatology. 64:1587–1605. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Lai W, Li Q, Yu Y, Jin J, Guo W, Zhou X, Liu X and Wang Y: A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochem Biophys Res Commun. 491:469–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lamb YN: Glecaprevir/pibrentasvir: First global approval. Drugs. 77:1797–1804. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nehra V, Rizza SA and Temesgen Z: Sofosbuvir/velpatasvir fixed-dose combination for the treatment of chronic hepatitis C virus infection. Drugs Today (Barc). 53:177–189. 2017. View Article : Google Scholar | |
Conti F, Buonfiglioli F, Scuteri A, Crespi C, Bolondi L, Caraceni P, Foschi FG, Lenzi M, Mazzella G, Verucchi G, et al: Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J Hepatol. 65:727–733. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reig M, Mariño Z, Perelló C, Iñarrairaegui M, Ribeiro A, Lens S, Díaz A, Vilana R, Darnell A, Varela M, et al: Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol. 65:719–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Suzuki F, Fujiyama S, Kawamura Y, Sezaki H, Hosaka T, Akuta N, Suzuki Y, Saitoh S, Arase Y, et al: Sustained virologic response by direct antiviral agents reduces the incidence of hepatocellular carcinoma in patients with HCV infection. J Med Virol. 89:476–483. 2017. View Article : Google Scholar | |
Selman M, López-Otín C and Pardo A: Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J. 48:538–552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Knudsen L, Ruppert C and Ochs M: Tissue remodelling in pulmonary fibrosis. Cell Tissue Res. 367:607–626. 2017. View Article : Google Scholar | |
Cao Z, Lis R, Ginsberg M, Chavez D, Shido K, Rabbany SY, Fong GH, Sakmar TP, Rafii S and Ding BS: Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med. 22:154–162. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andersson-Sjöland A, Karlsson JC and Rydell-Törmänen K: ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling. Lab Invest. 96:206–217. 2016. View Article : Google Scholar | |
Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, et al: Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 214:2387–2404. 2017. View Article : Google Scholar : PubMed/NCBI | |
Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA and Kahn M: Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA. 107:14309–14314. 2010. View Article : Google Scholar | |
Chen X, Shi C, Meng X, Zhang K, Li X, Wang C, Xiang Z, Hu K and Han X: Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2. Exp Mol Pathol. 101:22–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA, et al: Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 48:607–616. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K, Park Y, Azimi R, Kerper NR, Wesselhoeft RA, et al: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 545:355–359. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chartier C, Raval J, Axelrod F, Bond C, Cain J, Dee-Hoskins C, Ma S, Fischer MM, Shah J, Wei J, et al: Therapeutic targeting of tumor-derived R-Spondin attenuates β-catenin signaling and tumorigenesis in multiple cancer types. Cancer Res. 76:713–723. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Shen J, He J, He J and Jiang G: A meta-analysis of abnormal β-catenin immunohistochemical expression as a prognostic factor in lung cancer: Location is more important. Clin Transl Oncol. 18:685–692. 2016. View Article : Google Scholar | |
Jin J, Zhan P, Katoh M, Kobayashi SS, Phan K, Qian H, Li H and Wang X and Wang X: Prognostic significance of β-catenin expression in patients with non-small cell lung cancer: A meta-analysis. Transl Lung Cancer Res. 6:97–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mano H: ALKoma: A cancer subtype with a shared target. Cancer Discov. 2:495–502. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, et al: The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22:2109–2119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Suda K, Wiens J and Bunn PA Jr: New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 388:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci. 37:1081–1096. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, et al: Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 23:60–68. 2017. View Article : Google Scholar | |
Bendell J, Eckhardt GS, Hochster HS, Morris VK, Strickler J, Kapoun AM, Wang M, Xu L, McGuire K, Dupont J, et al: Initial results from a phase 1a/b study of OMP-131R10, a first-in-class anti-RSPO3 antibody, in advanced solid tumors and previously treated metastatic colorectal cancer (CRC). Eur J Cancer. 69(Suppl 1): S29–S30. 2016. View Article : Google Scholar | |
Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar | |
Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al: Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar | |
Chen CW, Beyer C, Liu J, Maier C, Li C, Trinh-Minh T, Xu X, Cole SH, Hsieh MH, Ng N, et al: Pharmacological inhibition of porcupine induces regression of experimental skin fibrosis by targeting Wnt signalling. Ann Rheum Dis. 76:773–778. 2017. View Article : Google Scholar : PubMed/NCBI | |
Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al: Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 38:1413–1425. 2017. | |
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Quackenbush KS, Bagby S, Tai WM, Messersmith WA, Schreiber A, Greene J, Kim J, Wang G, Purkey A, Pitts TM, et al: The novel tankyrase inhibitor (AZ1366) enhances irinotecan activity in tumors that exhibit elevated tankyrase and irinotecan resistance. Oncotarget. 7:28273–28285. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shultz MD, Cheung AK, Kirby CA, Firestone B, Fan J, Chen CH, Chen Z, Chin DN, Dipietro L, Fazal A, et al: Identification of NVP-TNKS656: The use of structure-efficiency relationships to generate a highly potent, selective, and orally active tankyrase inhibitor. J Med Chem. 56:6495–6511. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes Axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, Renner M, Kirfel J, Steiner S, Huss S, et al: SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 33:5006–5016. 2014. View Article : Google Scholar | |
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamada K, Hori Y, Yamaguchi A, Matsuki M, Tsukamoto S, Yokoi A, Semba T, Ozawa Y, Inoue S, Yamamoto Y, et al: Abstract 5177: E7386: First-in-class orally active CBP/β-catenin modulator as an anticancer agent. Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1–5; Washington, DC. Philadelphia. AACR; Cancer Res. 77(Suppl 13): 51772017. View Article : Google Scholar | |
Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP and Birchmeier W: A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 76:891–901. 2016. View Article : Google Scholar | |
Zhou H, Mak PY, Mu H, Mak DH, Zeng Z, Cortes J, Liu Q, Andreeff M and Carter BZ: Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia. 31:2065–2074. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: Identification and characterization of JMJD2 family genes in silico. Int J Oncol. 24:1623–1628. 2004.PubMed/NCBI | |
Berry WL and Janknecht R: KDM4/JMJD2 histone demethylases: Epigenetic regulators in cancer cells. Cancer Res. 73:2936–2942. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim TD, Fuchs JR, Schwartz E, Abdelhamid D, Etter J, Berry WL, Li C, Ihnat MA, Li PK and Janknecht R: Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors. Am J Transl Res. 6:236–247. 2014.PubMed/NCBI | |
Pedersen MT, Kooistra SM, Radzisheuskaya A, Laugesen A, Johansen JV, Hayward DG, Nilsson J, Agger K and Helin K: Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development. EMBO J. 35:1550–1564. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tomaz RA, Harman JL, Karimlou D, Weavers L, Fritsch L, Bou-Kheir T, Bell E, Del Valle Torres I, Niakan KK, Fisher C, et al: Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development. 144:567–579. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW and Shivdasani RA: Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell. 5:91–102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Franci G, Sarno F, Nebbioso A and Altucci L: Identification and characterization of PKF118-310 as a KDM4A inhibitor. Epigenetics. 12:198–205. 2017. View Article : Google Scholar : | |
Wei W, Chua MS, Grepper S and So S: Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer. 126:2426–2436. 2010. | |
Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AML, Girgis-Gabardo A, Ilieva D and Hassell JA: Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One. 7:e339762012. View Article : Google Scholar | |
Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, Palumbo-Zerr K, Lin NY, Distler A, Gelse K, et al: Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 72:1255–1258. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy. Epigenomics. 8:285–305. 2016. View Article : Google Scholar | |
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X and Liang HJ: EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget. 7:41540–41558. 2016.PubMed/NCBI | |
Huang M, Chen C, Geng J, Han D, Wang T, Xie T, Wang L, Wang Y, Wang C, Lei Z and Chu X: Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett. 398:12–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, Du X, Li J, Li P, Ren R and Pan J: Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest. 126:3961–3980. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feinberg AP, Koldobskiy MA and Göndör A: Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 17:284–299. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morera L, Lübbert M and Jung M: Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 8:572016. View Article : Google Scholar : PubMed/NCBI | |
Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Xu X, Hecht A and Boyer TG: Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem. 281:14066–14075. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA and Young RA: Super-enhancers in the control of cell identity and disease. Cell. 155:934–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin JW and Wang G: The Mediator complex: A master coordinator of transcription and cell lineage development. Development. 141:977–987. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mallinger A, Crumpler S, Pichowicz M, Waalboer D, Stubbs M, Adeniji-Popoola O, Wood B, Smith E, Thai C, Henley AT, et al: Discovery of potent, orally bioavailable, small-molecule inhibitors of WNT signaling from a cell-based pathway screen. J Med Chem. 58:1717–1735. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dale T, Clarke PA, Esdar C, Waalboer D, Adeniji-Popoola O, Ortiz-Ruiz MJ, Mallinger A, Samant RS, Czodrowski P, Musil D, et al: A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol. 11:973–980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A, Fadeyi O, Christie AL, et al: Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 526:273–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
Poss ZC, Ebmeier CC, Odell AT, Tangpeerachaikul A, Lee T, Pelish HE, Shair MD, Dowell RD, Old WM and Taatjes DJ: Identification of Mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics. Cell Rep. 15:436–450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, et al: CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 14:342–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schmitt M, Metzger M, Gradl D, Davidson G and Orian-Rousseau V: CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ. 22:677–689. 2015. View Article : Google Scholar : | |
Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, et al: Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol. 35(Suppl): S244–S275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP and Molenaar RJ: Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta. 1868:183–198. 2017.PubMed/NCBI | |
Vincan E, Flanagan DJ, Pouliot N, Brabletz T and Spaderna S: Variable FZD7 expression in colorectal cancers indicates regulation by the tumour microenvironment. Dev Dyn. 239:311–317. 2010. | |
Simmons GE Jr, Pandey S, Nedeljkovic-Kurepa A, Saxena M, Wang A and Pruitt K: Frizzled 7 expression is positively regulated by SIRT1 and β-catenin in breast cancer cells. PLoS One. 9:e988612014. View Article : Google Scholar | |
Qiu X, Jiao J, Li Y and Tian T: Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget. 7:85987–85999. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, Masuho I, Timson DJ, Martemyanov KA and Liu QJ: LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem. 292:14989–15001. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ayyar BV, Arora S and O'Kennedy R: Coming-of-age of antibodies in cancer therapeutics. Trends Pharmacol Sci. 37:1009–1028. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beck A, Goetsch L, Dumontet C and Corvaïa N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kontermann RE and Brinkmann U: Bispecific antibodies. Drug Discov Today. 20:838–847. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stadler CR, Bähr-Mahmud H, Celik L, Hebich B, Roth AS, Roth RP, Karikó K, Türeci O and Sahin Y: Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med. 23:815–817. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jackson HJ, Rafiq S and Brentjens RJ: Driving CAR T-cells forward. Nat Rev Clin Oncol. 13:370–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai H, Wang Y, Lu X and Han W: Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 108:djv4392016. View Article : Google Scholar : PubMed/NCBI | |
Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M, Genovese P, Gentner B, Gullotta F, Ponzoni M, Bernardi M, et al: CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood. 122:3461–3472. 2013. View Article : Google Scholar : PubMed/NCBI | |
Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, Yu SF, Yee S, Goldenberg D, Fields C, et al: Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 7:314ra1862015. View Article : Google Scholar | |
Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q and Carmon KS: LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther. 15:1580–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T and Gronau S: Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 44:823–829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Al-Rawi V, Laeufer T, Glocker K, Heneka Y and Matzke-Ogi A: Abstract 4911: Allosteric inhibition of the receptor tyrosine kinases c-MET, RON and VEGFR-2 via the co-receptor CD44v6 by the novel compound AMC303. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; Apr 1-5, 2017; Washington, DC. Philadelphia. AACR; Cancer Res. 77(Suppl 13): 49112017. View Article : Google Scholar | |
Inglis DJ, Beaumont DM and Lavranos TC: Abstract 4695: Targeting the LGR5 complex with BNC101 to improve check- point inhibitor therapy in colorectal cancer. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; Apr 1-5, 2017; Washington, DC. Philadelphia. AACR; Cancer Res. 77(Suppl 13): 46952017. View Article : Google Scholar | |
Katoh M: The integration of genomics testing and functional proteomics in the era of personalized medicine. Expert Rev Proteomics. 14:1055–1058. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, et al: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 31:1023–1031. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hovelson DH, McDaniel AS, Cani AK, Johnson B, Rhodes K, Williams PD, Bandla S, Bien G, Choppa P, Hyland F, et al: Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia. 17:385–399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Friedman AA, Letai A, Fisher DE and Flaherty KT: Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 15:747–756. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Whorehouses D and Caldas C: Of mice and men: Patient-derived xenografts in cancer medicine. Ann Oncol. 28:2330–2331. 2017. View Article : Google Scholar | |
Singal AG and El-Serag HB: Hepatocellular carcinoma from epidemiology to prevention: Translating knowledge into practice. Clin Gastroenterol Hepatol. 13:2140–2151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeng M, Mao XH, Li JX, Tong WD, Wang B, Zhang YJ, Guo G, Zhao ZJ, Li L, Wu DL, et al: Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 386:1457–1464. 2015. View Article : Google Scholar : PubMed/NCBI |