1
|
Sandkühler J: Models and mechanisms of
hyperalgesia and allodynia. Physiol Rev. 89:707–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ji RR, Kohno T, Moore KA and Woolf CJ:
Central sensitization and LTP: Do pain and memory share similar
mechanisms? Trends Neurosci. 26:696–705. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jensen TS and Finnerup NB: Allodynia and
hyperalgesia in neuropathic pain: Clinical manifestations and
mechanisms. Lancet Neurol. 13:924–935. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang W, Wang W, Wang Y, Huang J, Wu S and
Li YQ: Temporal changes of astrocyte activation and glutamate
transporter-1 expression in the spinal cord after spinal nerve
ligation-induced neuropathic pain. Anat Rec (Hoboken). 291:513–318.
2008. View
Article : Google Scholar
|
5
|
Watkins LR, Milligan ED and Maier SF:
Spinal cord glia: New players in pain. Pain. 93:201–205. 2001.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhuang ZY, Wen YR, Zhang DR, Borsello T,
Bonny C, Strichartz GR, Decosterd I and Ji RR: A peptide c-Jun
N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after
spinal nerve ligation: Respective roles of JNK activation in
primary sensory neurons and spinal astrocytes for neuropathic pain
development and maintenance. J Neurosci. 26:3551–3560. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhuang ZY, Gerner P, Woolf CJ and Ji RR:
ERK is sequentially activated in neurons, microglia, and astrocytes
by spinal nerve ligation and contributes to mechanical allodynia in
this neuropathic pain model. Pain. 114:149–159. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Eliasson C, Sahlgren C, Berthold CH,
Stakeberg J, Celis JE, Betsholtz C, Eriksson JE and Pekny M:
Intermediate filament protein partnership in astrocytes. J Biol
Chem. 274:23996–24006. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim DS, Figueroa KW, Li KW, Boroujerdi A,
Yolo T and Luo ZD: Profiling of dynamically changed gene expression
in dorsal root ganglia post peripheral nerve injury and a critical
role of injury-induced glial fibrillary acidic protein in
maintenance of pain behaviors (corrected). Pain. 143:114–122. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Eng LF, Ghirnikar RS and Lee YL: Glial
fibrillary acidic protein: GFAP-thirty-one years (1969–2000).
Neurochem Res. 25:1439–1451. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mccall MA, Gregg RG, Behringer RR, Brenner
M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY and
Messing A: Targeted deletion in astrocyte intermediate filament
(Gfap) alters neuronal physiology. Proc Natl Acad Sci USA.
93:6361–6366. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shibuki K, Gomi H, Chen L, Bao S, Kim JJ,
Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, et al:
Deficient cerebellar long-term depression, impaired eyeblink
conditioning, and normal motor coordination in GFAP mutant mice.
Neuron. 16:587–599. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tanaka H, Katoh A, Oguro K, Shimazaki K,
Gomi H, Itohara S, Masuzawa T and Kawai N: Disturbance of
hippocampal long-term potentiation after transient ischemia in GFAP
deficient mice. J Neurosci Res. 67:11–20. 2002. View Article : Google Scholar
|
14
|
Choi AM, Ryter SW and Levine B: Autophagy
in human health and disease. N Engl J Med. 368:651–662. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hsieh Ch, Pai PY, Hsueh HW, Yuan SS and
Hsieh YC: Complete induction of autophagy is essential for
cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Barth S, Glick D and Macleod KF:
Autophagy: Assays and artifacts. J Pathol. 221:117–124. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jaeger PA and Wyss-Coray T:
All-you-can-eat: Autophagy in neurodegeneration and
neuroprotection. Mol Neurodegener. 4:162009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu YD, Wang ZB, Han G and Zhao P:
Hyperbaric oxygen treatment attenuates neuropathic pain by
elevating autophagy flux via inhibiting mTOR pathway. Am J Transl
Res. 9:2629–2638. 2017.PubMed/NCBI
|
19
|
Guo JS, Jing PB, Wang JA, Zhang R, Jiang
BC, Gao YJ and Zhang ZJ: Increased autophagic activity in dorsal
root ganglion attenuates neuropathic pain following peripheral
nerve injury. Neurosci Lett. 599:158–163. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tateda S, Kanno H, Ozawa H, Sekiguchi A,
Yahata K, Yamaya S and Itoi E: Rapamycin suppresses microglial
activation and reduces the development of neuropathic pain after
spinal cord injury. J Orthop Res. 35:93–103. 2017. View Article : Google Scholar
|
21
|
Piao Y, Gwon DH, Kang DW, Hwang TW, Shin
N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, et al: TLR4-mediated
autophagic impairment contributes to neuropathic pain in chronic
constriction injury mice. Mol Brain. 11:112018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Erlich S, Alexandrovich A, Shohami E and
Pinkas-Kramarski R: Rapamycin is a neuroprotective treatment for
traumatic brain injury. Neurobiol Dis. 26:86–93. 2017. View Article : Google Scholar
|
23
|
Carloni S, Buonocore G and Balduini W:
Protective role of autophagy in neonatal hypoxia-ischemia induced
brain injury. Neurobiol Dis. 32:329–339. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang G, Yue Z, Talloczy Z, Hagemann T, Cho
W, Messing A, Sulzer DL and Goldman JE: Autophagy induced by
Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK
and mTOR signaling pathways. Hum Mol Genet. 17:1540–1555. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Qin AP, Liu CF, Qin YY, Hong LZ, Xu M,
Yang L, Liu J, Qin ZH and Zhang HL: Autophagy was activated in
injured astrocytes and mildly decreased cell survival following
glucose and oxygen deprivation and focal cerebral ischemia.
Autophagy. 6:738–753. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bennett GJ and Xie YK: A peripheral
mononeuropathy in rat that produces disorders of pain sensation
like those seen in man. Pain. 33:87–107. 1988. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF,
Hsueh HW, Lee PH and Hsieh YC: Lc3 over-expression improves
survival and attenuates lung injury through increasing
autophagosomal clearance in septic mice. Ann Surg. 257:352–363.
2013. View Article : Google Scholar
|
28
|
Takahashi W, Watanabe E, Fujimura L,
Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S and
Hatano M: Kinetics and protective role of autophagy in a mouse
cecal ligation and puncture-induced sepsis. Crit Care. 17:R1602013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yalcin I, Choucair-Jaafar N, Benbouzid M,
Tessier LH, Muller A, Hein L, Freund-Mercier MJ and Barrot M:
beta(2)-adrenoceptors are critical for antidepressant treatment of
neuropathic pain. Ann Neurol. 65:218–225. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bianchi M, Sacerdote P,
Ricciardi-Castagnoli P, Mantegazza P and Panerai AE: Central
effects of tumor necrosis factor alpha and interleukin-1 alpha on
nociceptive thresholds and spontaneous locomotor activity. Neurosci
Lett. 148:76–80. 1992. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kang R, Zeh HJ, Lotze MT and Tang D: The
Beclin 1 network regulates autophagy and apoptosis. Cell Death
Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mizushima N and Hara T: Intracellular
quality control by autophagy: How does autophagy prevent
neurodegeneration? Autophagy. 2:302–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Svensson CI and Brodin E: Spinal
astrocytes in pain processing: Non-neuronal cells as therapeutic
targets. Mol Interv. 10:25–38. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gao YJ and Ji RR: Targeting astrocyte
signaling for chronic pain. Neurotherapeutics. 7:482–493. 2010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Berliocchi L, Maiarù M, Varano GP, Russo
R, Corasaniti MT, Bagetta G and Tassorelli C: Spinal autophagy is
differently modulated in distinct mouse models of neuropathic pain.
Mol Pain. 11:32015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Woolf CJ and Mannion RJ: Neuropathic pain:
Aetiology, symptoms, mechanisms, and management. Lancet.
353:1959–1964. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hamidi GA, Jafari-Sabet M, Abed A,
Mesdaghinia A, Mahlooji M and Banafshe HR: Gabapentin enhances
anti-nociceptive effects of morphine on heat, cold, and mechanical
hyperalgesia in a rat model of neuropathic pain. Iran J Basic Med
Sci. 17:753–759. 2014.
|
38
|
Lattanzi R, Maftei D, Marconi V,
Florenzano F, Franchi S, Borsani E, Rodella LF, Balboni G,
Salvadori S, Sacerdote P and Negri L: Prokineticin 2 upregulation
in the peripheral nervous system has a major role in triggering and
maintaining neuropathic pain in the chronic constriction injury
model. Biomed Res Int. 2015:3012922015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Aldskogius H and Kozlova EN: Central
neuron-glial and glial-glial interactions following axon injury.
Prog Neurobiol. 55:1–26. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nimmerjahn A, Kirchhoff F and Helmchen F:
Resting microglial cells are highly dynamic surveillants of brain
parenchyma in vivo. Science. 308:1314–1318. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rossi DJ, Brady JD and Mohr C: Astrocyte
metabolism and signaling during brain ischemia. Nat Neurosci.
10:1377–1386. 2007. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Halassa MM, Fellin T, Takano H, Dong JH
and Haydon PG: Synaptic islands defined by the territory of a
single astrocyte. J Neurosci. 27:6473–6477. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Booth LA, Tavallai S, Hamed HA,
Cruickshanks N and Dent P: The role of cell signalling in the
crosstalk between autophagy and apoptosis. Cell Signal. 26:549–555.
2014. View Article : Google Scholar :
|
44
|
Shintani T and Klionsky DJ: Autophagy in
health and disease: a double-edged sword. Science. 306:990–995.
2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Anglade P, Vyas S, Javoy-Agid F, Herrero
MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC and
Agid Y: Apoptosis and autophagy in nigral neurons of patients with
Parkinson's disease. Histol Histopathol. 12:25–31. 1997.PubMed/NCBI
|
47
|
Nixon RA: The role of autophagy in
neurodegenerative disease. Nat Med. 19:983–997. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kegel KB, Kim M, Sapp E, McIntyre C,
Castaño JG, Aronin N and DiFiglia M: Huntingtin expression
stimulates endosomal-lysosomal activity, endosome tubulation, and
autophagy. J Neurosci. 20:7268–7278. 2000. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cataldo AM, Hamilton DJ, Barnett JL,
Paskevich PA and Nixon RA: Properties of the endosomal-lysosomal
system in the human central nervous system: Disturbances mark most
neurons in populations at risk to degenerate in Alzheimer's
disease. J Neurosci. 16:186–199. 1996. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rubinsztein DC: The roles of intracellular
protein-degradation pathways in neurodegeneration. Nature.
443:780–786. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Den YH, He HY, Yang LQ and Zhang PY:
Dynamic changes in neuronal autophagy and apoptosis in the ischemic
penumbra following permanent ischemic stroke. Neural Regen Res.
11:1108–1114. 2016. View Article : Google Scholar
|
52
|
Boellaard JW, Kao M, Schlote W and
Diringer H: Neuronal autophagy in experimental scrapie. Acta
Neuropathol. 82:225–228. 1991. View Article : Google Scholar : PubMed/NCBI
|
53
|
Berliocchi L, Russo R, Maiarù M, Levato A,
Bagetta G and Corasaniti MT: Autophagy impairment in a mouse model
of neuropathic pain. Mol Pain. 7:832011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sarkar C, Zhao Z, Aungst S, Sabirzhanov B,
Faden AI and Lipinski MM: Impaired autophagy flux is associated
with neuronal cell death after traumatic brain injury. Autophagy.
10:2208–2222. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li JP, Yang YX, Liu QL, Zhou ZW, Pan ST,
He ZX, Zhang X, Yang T, Pan SY, Duan W, et al: The pan-inhibitor of
Aurora kinases danusertib induces apoptosis and autophagy and
suppresses epithelial-to-mesenchymal transition in human breast
cancer cells. Drug Des Devel Ther. 9:1027–1062. 2015.PubMed/NCBI
|
56
|
Wang W, Fan H, Zhou Y, Duan P, Zhao G and
Wu G: Knockdown of autophagy-related gene BECLIN1 promotes cell
growth and inhibits apoptosis in the A549 human lung cancer cell
line. Mol Med Rep. 7:1501–1505. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Bjørkøy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005. View Article : Google Scholar : PubMed/NCBI
|
58
|
Wang QJ, Ding Y, Kohtz DS, Mizushima N,
Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N and Yue Z:
Induction of autophagy in axonal dystrophy and degeneration. J
Neurosci. 26:8057–8068. 2006. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ling H, Chen H, Wei M, Meng X, Yu Y and
Xie K: The effect of autophagy on inflammation cytokines in renal
ischemia/reperfusion injury. Infammation. 39:347–356. 2016.
View Article : Google Scholar
|
60
|
Dong AL, Chen HG, Xie KL and Yu YH: Role
of autophagy in lung injury in septic mice. Chin J Anesthesiol.
35:1124–1127. 2015.
|
61
|
Wang HX, Huo XD, Chen HG, Li B, Liu J, Ma
WT, Wang XJ, Xie KL, Yu YH and Shi KM: Hydrogen-rich saline
activated autophagy via HIF-1α pathways in neuropathic pain model.
BioMed Res Int. 2018:Article ID 4670834. 2018.
|
62
|
Dong A, Wang L, Wang YY, Bian YX, Yu YH
and Xie KL: Role of autophagy in hydrogen-induced reduction of lung
injury in septic mice. Chin J Anesthesiol. 37:632–634. 2017.In
Chinese.
|
63
|
Pankiv S, Clausen TH, Lamark T, Brech A,
Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T:
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of
ubiquitinated protein aggregates by autophagy. J Biol Chem.
282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI
|
64
|
Ciani B, Layfield R, Cavey JR, Sheppard PW
and Searle MS: Structure of the ubiquitin-associated domain of p62
(SQSTM1) and implications for mutations that cause Paget's disease
of bone. J Biol Chem. 278:37409–37412. 2003. View Article : Google Scholar : PubMed/NCBI
|
65
|
Settembre C, Fraldi A, Jahreiss L,
Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C,
Rubinsztein DC and Ballabio A: A block of autophagy in lysosomal
storage disorders. Hum Mol Genet. 17:119–129. 2008. View Article : Google Scholar
|
66
|
Settembre C, Fraldi A, Rubinsztein DC and
Ballabio A: Lysosomal storage diseases as disorders of autophagy.
Autophagy. 4:113–114. 2008. View Article : Google Scholar
|
67
|
Dehay B, Martinez-Vicente M, Caldwell GA,
Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M and Bezard E:
Lysosomal impairment in Parkinson's disease. Mov Disord.
28:725–732. 2013. View Article : Google Scholar : PubMed/NCBI
|
68
|
Saftig P and Eskelinen EL: Live longer
with LAMP-2. Nat Med. 14:909–910. 2008. View Article : Google Scholar : PubMed/NCBI
|
69
|
Zhang YL, Cao YJ, Zhang X, Liu HH, Tong T,
Xiao GD, Yang YP and Liu CF: The autophagy-lysosome pathway: A
novel mechanism involved in the processing of oxidized LDL in human
vascular endothelial cells. Biochem Biophys Res Commun.
394:377–382. 2010. View Article : Google Scholar : PubMed/NCBI
|
70
|
Gutierrez MG, Munafó DB, Berón W and
Colombo MI: Rab7 is required for the normal progression of the
autophagic pathway in mammalian cells. J Cell Sci. 117:2687–2697.
2004. View Article : Google Scholar : PubMed/NCBI
|
71
|
Hsieh YC, Athar M and Chaudry IH: When
apoptosis meets autophagy: Deciding cell fate after trauma and
sepsis. Trends Mol Med. 15:129–138. 2009. View Article : Google Scholar : PubMed/NCBI
|