1
|
WHO (World Health Organization): WHO Fact
Sheet No. 296. Electromagnetic Fields and Public Health,
Electromagnetic Hypersensitivity Electromagnetic Fields and Public
Health, Electromagnetic Hypersensitivity. Available from:
http://www.who.int/peh-emf/publications/facts/fs296/en/.
2005
|
2
|
Hansson Mild K, Repacholi M, van Deventer
E and Ravazzani P: Working Group Report. Proceedings International
Workshop on EMF hypersensitivity; 25-27 October 2004; Prague, Czech
Republic. WHO Press; Milan: pp. 15–26. 2006
|
3
|
Belpomme D, Campagnac C and Irigaray P:
Reliable disease biomarkers characterizing and identifying
electrohypersensi-tivity and multiple chemical sensitivity as two
etiopathogenic aspects of a unique pathological disorder. Rev
Environ Health. 30:251–271. 2015. View Article : Google Scholar
|
4
|
Irigaray P, Garrel C, Houssay C, Mantello
P and Belpomme D: Beneficial effects of a Fermented Papaya
Preparation for the treatment of electrohypersensitivity
self-reporting patients: Results of a phase I-II clinical trial
with special reference to cerebral pulsation measurement and
oxidative stress analysis. Funct Foods Health Dis. 8:122–144.
2018.
|
5
|
Belpomme D, Hardell L, Belyaev I, Burgio E
and Carpenter D: Thermal and non-thermal health effects of
non-ionizing radiation: An international consensus perspective.
Envpol. In press.
|
6
|
Bergqvist U and Vogel E: Possible health
implications of subjective symptoms and electromagnetic fields. A
report prepared by a European group of experts for the European
Commission, DGV. Arbete och Hälsa, European Commission DG V,
National Institute for Working Life; 1997, https://gupea.ub.gu.se//bitstream/2077/4156/1/ah1997_19.pdf.
|
7
|
Santini R, Seigne M, Bonhomme-Faivre L,
Bouffet S, Defrasme E and Sage M: Symptoms experienced by users of
digital cellular phones: A study of a French engineering school.
Electromagn Biol Med. 21:81–88. 2002. View Article : Google Scholar
|
8
|
Röösli M: Radiofrequency electromagnetic
field exposure and non-specific symptoms of ill health: A
systematic review. Environ Res. 107:277–287. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Baliatsas C, Van Kamp I, Bolte J, Schipper
M, Yzermans J and Lebret E: Non-specific physical symptoms and
electromagnetic field exposure in the general population: Can we
get more specific? A systematic review. Environ Int. 41:15–28.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hagström M, Auranen J and Ekman R:
Electromagnetic hypersensitive Finns: Symptoms, perceived sources
and treatments, a questionnaire study. Pathophysiology. 20:117–122.
2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Irigaray P, Lebar P and Belpomme D: How
ultrasonic cerebral tomosphygmography can contribute to the
diagnosis of electro-hypersensitivity. JUM. In press.
|
12
|
Greaves MW and Sabroe RA: Histamine: The
quintessential mediator. J Dermatol. 23:735–740. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kapural M, Krizanac-Bengez LJ, Barnett G,
Perl J, Masaryk T, Apollo D, Rasmussen P, Mayberg MR and Janigro D:
Serum S-100beta as a possible marker of blood-brain barrier
disruption. Brain Res. 940:102–104. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kanner AA, Marchi N, Fazio V, Mayberg MR,
Koltz MT, Siomin V, Stevens GH, Masaryk T, Aumayr B, Vogelbaum MA,
et al: Serum S100beta: A noninvasive marker of blood-brain barrier
function and brain lesions. Cancer. 97:2806–2813. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Morimoto RI: Cells in stress:
Transcriptional activation of heat shock genes. Science.
259:1409–1410. 1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
Santoro MG: Heat shock factors and the
control of the stress response. Biochem Pharmacol. 59:55–63. 2000.
View Article : Google Scholar
|
17
|
Lebel B, Arnoux B, Chanez P, Bougeard YH,
Daures JP, Bousquet J and Campbell AM: Ex vivo pharmacologic
modulation of basophil histamine release in asthmatic patients.
Allergy. 51:394–400. 1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Smit LH, Korse CM and Bonfrer JM:
Comparison of four different assays for determination of serum
S-100B. Int J Biol Markers. 20:34–42. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
De AK and Roach SE: Detection of the
soluble heat shock protein 27 (hsp27) in human serum by an ELISA. J
Immunoassay Immunochem. 25:159–170. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pockley AG, Shepherd J and Corton JM:
Detection of heat shock protein 70 (Hsp70) and anti-Hsp70
antibodies in the serum of normal individuals. Immunol Invest.
27:367–377. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pryor WA: On the detection of lipid
hydroperoxides in biological samples. Free Radic Biol Med.
7:177–178. 1989. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sies H: Glutathione and its role in
cellular functions. Free Radic Biol Med. 27:916–921. 1999.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Radi R: Nitric oxide, oxidants, and
protein tyrosine nitration. Proc Natl Acad Sci USA. 101:4003–4008.
2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Londero D and Lo Greco P: Automated
high-performance liquid chromatographic separation with
spectrofluorometric detection of a malondialdehyde-thiobarbituric
acid adduct in plasma. J Chromatogr A. 729:207–210. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ohkawa H, Ohishi N and Yagi K: Assay for
lipid peroxides in animal tissues by thiobarbituric acid reaction.
Anal Biochem. 95:351–358. 1979. View Article : Google Scholar : PubMed/NCBI
|
26
|
Akerboom TP and Sies H: Assay of
glutathione, glutathione disulfide, and glutathione mixed
disulfides in biological samples. Methods Enzymol. 77:373–382.
1981. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ischiropoulos H, Zhu L, Chen J, Tsai M,
Martin JC, Smith CD and Beckman JS: Peroxynitrite-mediated tyrosine
nitration catalyzed by superoxide dismutase. Arch Biochem Biophys.
298:431–437. 1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jocelyn PC: Spectrophotometric assay of
thiols. Methods Enzymol. 143:44–67. 1987. View Article : Google Scholar : PubMed/NCBI
|
29
|
Marklund S and Marklund G: Involvement of
the superoxide anion radical in the autoxidation of pyrogallol and
a convenient assay for superoxide dismutase. Eur J Biochem.
47:469–474. 1974. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mannervik B: Measurement of glutathione
reductase activity. Curr Protoc Toxicol. May;2001.PubMed/NCBI
|
31
|
Günzler WA, Kremers H and Flohé L: An
improved coupled test procedure for glutathione peroxidase (EC
1-11-1-9-) in blood. Z Klin Chem Klin Biochem. 12:444–448.
1974.PubMed/NCBI
|
32
|
Avery SV: Molecular targets of oxidative
stress. Biochem J. 434:201–210. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Holmström KM and Finkel T: Cellular
mechanisms and physiological consequences of redox-dependent
signalling. Nat Rev Mol Cell Biol. 15:411–421. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cencioni C, Spallotta F, Martelli F,
Valente S, Mai A, Zeiher AM and Gaetano C: Oxidative stress and
epigenetic regulation in ageing and age-related diseases. Int J Mol
Sci. 14:17643–17663. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Belpomme D: Epigenetics and environmental
carcinogenesis: Towards a general free radical theory of cancer.
In: World Cancer Congress. Session 202: Cancer Epigenetics and DNA
Methylation; Abstract no. 1. Barcelona, Spain. pp. 732017
|
36
|
Beckman JS: Oxidative damage and tyrosine
nitration from peroxynitrite. Chem Res Toxicol. 9:836–844. 1996.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ray PD, Huang BW and Tsuji Y: Reactive
oxygen species (ROS) homeostasis and redox regulation in cellular
signaling. Cell Signal. 24:981–990. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nielsen F, Mikkelsen BB, Nielsen JB,
Andersen HR and Grandjean P: Plasma malondialdehyde as biomarker
for oxida-tive stress: Reference interval and effects of life-style
factors. Clin Chem. 43:1209–1214. 1997.PubMed/NCBI
|
39
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: Production, metabolism, and signaling mechanisms of
malondi-aldehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar
|
40
|
Negre-Salvayre A, Coatrieux C, Ingueneau C
and Salvayre R: Advanced lipid peroxidation end products in
oxidative damage to proteins. Potential role in diseases and
therapeutic prospects for the inhibitors. Br J Pharmacol. 153:6–20.
2008. View Article : Google Scholar
|
41
|
Pizzimenti S, Ciamporcero E, Daga M,
Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore
A, Gentile F and Barrera G: Interaction of aldehydes derived from
lipid peroxidation and membrane proteins. Front Physiol. 4:2422013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Del Rio D, Stewart AJ and Pellegrini N: A
review of recent studies on malondialdehyde as toxic molecule and
biological marker of oxidative stress. Nutr Metab Cardiovasc Dis.
15:316–328. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Slatter DA, Avery NC and Bailey AJ:
Identification of a new cross-link and unique histidine adduct from
bovine serum albumin incubated with malondialdehyde. J Biol Chem.
279:61–69. 2004. View Article : Google Scholar
|
44
|
Gönenç A, Ozkan Y, Torun M and Simşek B:
Plasma malondi-aldehyde (MDA) levels in breast and lung cancer
patients. J Clin Pharm Ther. 26:141–144. 2001. View Article : Google Scholar
|
45
|
Akbulut H, Akbulut KG, Icli F and
Büyükcelik A: Daily variations of plasma malondialdehyde levels in
patients with early breast cancer. Cancer Detect Prev. 27:122–126.
2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Manju V, Kalaivani Sailaja J and Nalini N:
Circulating lipid peroxidation and antioxidant status in cervical
cancer patients: A case-control study. Clin Biochem. 35:621–625.
2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bakan E, Taysi S, Polat MF, Dalga S,
Umudum Z, Bakan N and Gumus M: Nitric oxide levels and lipid
peroxidation in plasma of patients with gastric cancer. Jpn J Clin
Oncol. 32:162–166. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dierckx N, Horvath G, van Gils C,
Vertommen J, van de Vliet J, De Leeuw I and Manuel-y-Keenoy B:
Oxidative stress status in patients with diabetes mellitus:
Relationship to diet. Eur J Clin Nutr. 57:999–1008. 2003.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Polidori MC, Savino K, Alunni G, Freddio
M, Senin U, Sies H, Stahl W and Mecocci P: Plasma lipophilic
antioxidants and malo-ndialdehyde in congestive heart failure
patients: Relationship to disease severity. Free Radic Biol Med.
32:148–152. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tamer L, Sucu N, Polat G, Ercan B,
Aytacoglu B, Yücebilgiç G, Unlü A, Dikmengil M and Atik U:
Decreased serum total antioxidant status and erythrocyte-reduced
glutathione levels are associated with increased serum
malondialdehyde in atherosclerotic patients. Arch Med Res.
33:257–260. 2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Delibas N, Ozcankaya R and Altuntas I:
Clinical importance of erythrocyte malondialdehyde levels as a
marker for cognitive deterioration in patients with dementia of
Alzheimer type: A repeated study in 5-year interval. Clin Biochem.
35:137–141. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Logan AC and Wong C: Chronic fatigue
syndrome: Oxidative stress and dietary modifications. Altern Med
Rev. 6:450–459. 2001.PubMed/NCBI
|
53
|
Manuel y Keenoy B, Moorkens G, Vertommen J
and De Leeuw I: Antioxidant status and lipoprotein peroxidation in
chronic fatigue syndrome. Life Sci. 68:2037–2049. 2001. View Article : Google Scholar : PubMed/NCBI
|
54
|
Vecchiet J, Cipollone F, Falasca K,
Mezzetti A, Pizzigallo E, Bucciarelli T, De Laurentis S, Affaitati
G, De Cesare D and Giamberardino MA: Relationship between
musculoskeletal symptoms and blood markers of oxidative stress in
patients with chronic fatigue syndrome. Neurosci Lett. 335:151–154.
2003. View Article : Google Scholar : PubMed/NCBI
|
55
|
Richards RS, Wang L and Jelinek H:
Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med
Res. 38:94–98. 2007. View Article : Google Scholar
|
56
|
Maes M: Inflammatory and oxidative and
nitrosative stress pathways underpinning chronic fatigue,
somatization and psychosomatic symptoms. Curr Opin Psychiatry.
22:75–83. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
De Luca C, Thai JC, Raskovic D, Cesareo E,
Caccamo D, Trukhanov A and Korkina L: Metabolic and genetic
screening of electromagnetic hypersensitive subjects as a feasible
tool for diagnostics and intervention. Mediators Inflamm.
2014:9241842014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Aquilano K, Baldelli S and Ciriolo MR:
Glutathione: New roles in redox signaling for an old antioxidant.
Front Pharmacol. 5:1962014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Zitka O, Skalickova S, Gumulec J, Masarik
M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T and
Kizek R: Redox status expressed as GSH:GSSG ratio as a marker for
oxidative stress in paediatric tumour patients. Oncol Lett.
4:1247–1253. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Briviba K, Kissner R, Koppenol WH and Sies
H: Kinetic study of the reaction of glutathione peroxidase with
peroxynitrite. Chem Res Toxicol. 11:1398–1401. 1998. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rossi L, Squitti R, Pasqualetti P,
Marchese E, Cassetta E, Forastiere E, Rotilio G, Rossini PM and
Finazzi-Agró A: Red blood cell copper, zinc superoxide dismutase
activity is higher in Alzheimer's disease and is decreased by
D-penicillamine. Neurosci Lett. 329:137–140. 2002. View Article : Google Scholar : PubMed/NCBI
|
62
|
Pacher P, Beckman JS and Liaudet L: Nitric
oxide and peroxyni-trite in health and disease. Physiol Rev.
87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
O'Donnell VB, Chumley PH, Hogg N,
Bloodsworth A, Darley-Usmar VM and Freeman BA: Nitric oxide
inhibition of lipid peroxidation: Kinetics of reaction with lipid
peroxyl radicals and comparison with alpha-tocopherol.
Biochemistry. 36:15216–15223. 1997. View Article : Google Scholar
|
64
|
Ohshima H, Friesen M, Brouet I and Bartsch
H: Nitrotyrosine as a new marker for endogenous nitrosation and
nitration of proteins. Food Chem Toxicol. 28:647–652. 1990.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Ischiropoulos H: Biological tyrosine
nitration: A pathophysi-ological function of nitric oxide and
reactive oxygen species. Arch Biochem Biophys. 356:1–11. 1998.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Schopfer FJ, Baker PR and Freeman BA:
NO-dependent protein nitration: A cell signaling event or an
oxidative inflammatory response? Trends Biochem Sci. 28:646–654.
2003. View Article : Google Scholar : PubMed/NCBI
|
67
|
Marshall KA, Reist M, Jenner P and
Halliwell B: The neuronal toxicity of sulfite plus peroxynitrite is
enhanced by glutathione depletion: Implications for Parkinson's
disease. Free Radic Biol Med. 27:515–520. 1999. View Article : Google Scholar : PubMed/NCBI
|
68
|
Reynolds MR, Berry RW and Binder LI:
Site-specific nitration and oxidative dityrosine bridging of the
tau protein by peroxyni-trite: Implications for Alzheimer's
disease. Biochemistry. 44:1690–1700. 2005. View Article : Google Scholar : PubMed/NCBI
|
69
|
Vargas MR, Pehar M, Cassina P, Beckman JS
and Barbeito L: Increased glutathione biosynthesis by Nrf2
activation in astro-cytes prevents p75NTR-dependent motor neuron
apoptosis. J Neurochem. 97:687–696. 2006. View Article : Google Scholar : PubMed/NCBI
|
70
|
Gloire G, Legrand-Poels S and Piette J:
NF-kappaB activation by reactive oxygen species: Fifteen years
later. Biochem Pharmacol. 72:1493–1505. 2006. View Article : Google Scholar : PubMed/NCBI
|
71
|
Matata BM and Galinanes M: Peroxynitrite
is an essential component of cytokines production mechanism in
human monocytes through modulation of nuclear factor-kappa B DNA
binding activity. J Biol Chem. 277:2330–2335. 2002. View Article : Google Scholar
|
72
|
Falone S, Grossi MR, Cinque B, D'Angelo B,
Tettamanti E, Cimini A, Di Ilio C and Amicarelli F: Fifty hertz
extremely low-frequency electromagnetic field causes changes in
redox and differentiative status in neuroblastoma cells. Int J
Biochem Cell Biol. 39:2093–2106. 2007. View Article : Google Scholar : PubMed/NCBI
|
73
|
Park JE, Seo YK, Yoon HH, Kim CW, Park JK
and Jeon S: Electromagnetic fields induce neural differentiation of
human bone marrow derived mesenchymal stem cells via ROS mediated
EGFR activation. Neurochem Int. 62:418–424. 2013. View Article : Google Scholar : PubMed/NCBI
|
74
|
Consales C, Merla C, Marino C and Benassi
B: Electromagnetic fields, oxidative stress, and neurodegeneration.
Int J Cell Biol. 2012:6838972012. View Article : Google Scholar : PubMed/NCBI
|
75
|
Esmekaya MA, Ozer C and Seyhan N: 900 MHz
pulse-modulated radiofrequency radiation induces oxidative stress
on heart, lung, testis and liver tissues. Gen Physiol Biophys.
30:84–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
76
|
Kesari KK, Kumar S and Behari J: 900-MHz
microwave radiation promotes oxidation in rat brain. Electromagn
Biol Med. 30:219–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
77
|
Megha K, Deshmukh PS, Banerjee BD,
Tripathi AK, Ahmed R and Abegaonkar MP: Low intensity microwave
radiation induced oxidative stress, inflammatory response and DNA
damage in rat brain. Neurotoxicology. 51:158–165. 2015. View Article : Google Scholar : PubMed/NCBI
|
78
|
Furtado-Filho OV, Borba JB, Maraschin T,
Souza LM, Henriques JA, Moreira JC and Saffi J: Effects of chronic
exposure to 950 MHz ultra-high-frequency electromagnetic radiation
on reactive oxygen species metabolism in the right and left
cerebral cortex of young rats of different ages. Int J Radiat Biol.
91:891–897. 2015. View Article : Google Scholar : PubMed/NCBI
|
79
|
Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK
and Ocak AR: Effect of mobile phone exposure on apoptotic glial
cells and status of oxidative stress in rat brain. Electromagn Biol
Med. 28:342–354. 2009. View Article : Google Scholar : PubMed/NCBI
|
80
|
Simkó M: Cell type specific redox status
is responsible for diverse electromagnetic field effects. Curr Med
Chem. 14:1141–1152. 2007. View Article : Google Scholar : PubMed/NCBI
|