1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maughan TS, Adams RA, Smith CG, Meade AM,
Seymour MT, Wilson RH, Idziaszczyk S, Harris R, Fisher D, Kenny SL,
et al: Addition of cetuximab to oxaliplatin-based first-line
combination chemotherapy for treatment of advanced colorectal
cancer: Results of the randomised phase 3 MRC COIN trial. Lancet.
377:2103–2114. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Beppu T, Sakamoto Y, Hayashi H and Baba H:
Perioperative chemotherapy and hepatic resection for resectable
colorectal liver metastases. Hepatobiliary Surg Nutr. 4:72–75.
2015.PubMed/NCBI
|
4
|
André T, Boni C, Mounedji-Boudiaf L,
Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan
P, Bridgewater J, et al: Oxaliplatin, fluorouracil, and leucovorin
as adjuvant treatment for colon cancer. N Engl J Med.
350:2343–2351. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
André T, Boni C, Navarro M, Tabernero J,
Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F
and de Gramont A: Improved overall survival with oxaliplatin,
fluorouracil, and leucovorin as adjuvant treatment in stage II or
III colon cancer in the MOSAIC trial. J Clin Oncol. 27:3109–3116.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Portier G, Elias D, Bouche O, Rougier P,
Bosset JF, Saric J, Belghiti J, Piedbois P, Guimbaud R, Nordlinger
B, et al: Multicenter randomized trial of adjuvant fluorouracil and
folinic acid compared with surgery alone after resection of
colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin
Oncol. 24:4976–4982. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rubbia-Brandt L, Lauwers GY, Wang H, Majno
PE, Tanabe K, Zhu AX, Brezault C, Soubrane O, Abdalla EK, Vauthey
JN, et al: Sinusoidal obstruction syndrome and nodular regenerative
hyperplasia are frequent oxaliplatin-associated liver lesions and
partially prevented by bevacizumab in patients with hepatic
colorectal metastasis. Histopathology. 56:430–439. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Slade JH, Alattar ML, Fogelman DR, Overman
MJ, Agarwal A, Maru DM, Coulson RL, Charnsangavej C, Vauthey JN,
Wolff RA and Kopetz S: Portal hypertension associated with
oxaliplatin administration: Clinical manifestations of hepatic
sinusoidal injury. Clin Colorectal Cancer. 8:225–230. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hubert C, Fervaille C, Sempoux C, Horsmans
Y, Humblet Y, Machiels JP, Zech F, Ceratti A and Gigot JF:
Prevalence and clinical relevance of pathological hepatic changes
occurring after neoadjuvant chemotherapy for colorectal liver
metastases. Surgery. 147:185–194. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Robinson SM, Wilson CH, Burt AD, Manas DM
and White SA: Chemotherapy-associated liver injury in patients with
colorectal liver metastases: A systematic review and meta-analysis.
Ann Surg Oncol. 19:4287–4299. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rubbia-Brandt L, Tauzin S, Brezault C,
Delucinge-Vivier C, Descombes P, Dousset B, Majno PE, Mentha G and
Terris B: Gene expression profiling provides insights into pathways
of oxaliplatin-related sinusoidal obstruction syndrome in humans.
Mol Cancer Ther. 10:687–696. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Agostini J, Benoist S, Seman M, Julié C,
Imbeaud S, Letourneur F, Cagnard N, Rougier P, Brouquet A,
Zucman-Rossi J and Laurent-Puig P: Identification of molecular
pathways involved in oxaliplatin-associated sinusoidal dilatation.
J Hepatol. 56:869–876. 2012. View Article : Google Scholar
|
13
|
Sun L, Shen J, Pang X, Lu L, Mao Y and
Zeng M: Phase I safety and pharmacokinetic study of magnesium
isoglycyrrhizinate after single and multiple intravenous doses in
chinese healthy volunteers. J Clin Pharmacol. 47:767–773. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu Q, Wang J, Chen F, Lin K, Zhu M, Chen
L, Zhou X, Li C and Zhu H: Protective role of magnesium
isoglycyrrhizinate in non-alcoholic fatty liver disease and the
associated molecular mechanisms. Int J Mol Med. 38:275–282. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Cheng Y, Zhang J, Shang J and Zhang L:
Prevention of free fatty acid-induced hepatic lipotoxicity in HepG2
cells by magnesium isoglycyrrhizinate in vitro. Pharmacology.
84:183–190. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao HJ, Xiao L, Glizila B, Zhang H, Mao
R, Xiong Y, Xu L, Shu MY, Bai YW and Bao YX: The effect and
comparison of commonly used liver-protection drugs for irradiated
HL-7702 by X. Zhonghua Gan Zang Bing Za Zhi. 25:612–617. 2017.In
Chinese. PubMed/NCBI
|
17
|
Wang Y, Zhang Z, Wang X, Qi D, Qu A and
Wang G: Amelioration of ethanol-induced hepatitis by magnesium
isoglycyrrhizinate through inhibition of neutrophil cell
infiltration and oxidative damage. Mediators Inflamm.
2017:35269032017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang W, Liu J, Li P, Lu Q, Pei X, Sun Y,
Wang G and Hao K: Magnesium isoglycyrrhizinate shows
hepatoprotective effects in a cyclophosphamide-induced model of
hepatic injury. Oncotarget. 8:33252–33264. 2017.PubMed/NCBI
|
19
|
Lin Y, Li Y, Hu X, Liu Z, Chen J, Lu Y,
Liu J, Liao S, Zhang Y, Liang R, et al: The hepatoprotective role
of reduced glutathione and its underlying mechanism in
oxaliplatin-induced acute liver injury. Oncol Lett. 15:2266–2272.
2018.PubMed/NCBI
|
20
|
He Y, Zeng F, Liu Q, Ju W, Fu H, Hao H, Li
L and Xie Y: Protective effect of magnesium isoglycyrrhizinate on
ethanol-induced testicular injuries in mice. J Biomed Res.
24:153–160. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Robinson SM, Mann J, Vasilaki A, Mathers
J, Burt AD, Oakley F, White SA and Mann DA: Pathogenesis of FOLFOX
induced sinusoidal obstruction syndrome in a murine chemotherapy
model. J Hepatol. 59:318–326. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xiong W, Ren ZG, Qiu SJ, Sun HC, Wang L,
Liu BB, Li QS, Zhang W, Zhu XD, Liu L, et al: Residual
hepatocellular carcinoma after oxaliplatin treatment has increased
metastatic potential in a nude mouse model and is attenuated by
Songyou Yin. BMC Cancer. 10:2192010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kelley MR, Jiang Y, Guo C, Reed A, Meng H
and Vasko MR: Role of the DNA base excision repair protein, APE1 in
cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy.
PLoS One. 9:e1064852014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Kweekel DM, Gelderblom H and Guchelaar HJ:
Pharmacology of oxaliplatin and the use of pharmacogenomics to
individualize therapy. Cancer Treat Rev. 31:90–105. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
McWhirter D, Kitteringham N, Jones RP,
Malik H, Park K and Palmer D: Chemotherapy induced hepatotoxicity
in metastatic colorectal cancer: A review of mechanisms and
outcomes. Crit Rev Oncol Hematol. 88:404–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hua W, Huang HZ, Tan LT, Wan JM, Gui HB,
Zhao L, Ruan XZ, Chen XM and Du XG: CD36 mediated fatty
acid-induced podocyte apoptosis via oxidative stress. PLoS One.
10:e01275072015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang S, Li X, Jourd'heuil FL, Qu S,
Devejian N, Bennett E, Jourd'heuil D and Cai C: Cytoglobin promotes
cardiac progenitor cell survival against oxidative stress via the
upregulation of the NFκB/iNOS signal pathway and nitric oxide
production. Sci Rep. 7:107542017. View Article : Google Scholar
|
29
|
Arafa E, Bondzie PA, Rezazadeh K, Meyer
RD, Hartsough E, Henderson JM, Schwartz JH, Chitalia V and Rahimi
N: TMIGD1 is a novel adhesion molecule that protects epithelial
cells from oxidative cell injury. Am J Pathol. 185:2757–2767. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Madesh M and Hajnóczky G: VDAC-dependent
permeabilization of the outer mitochondrial membrane by superoxide
induces rapid and massive cytochrome c release. J Cell Biol.
155:1003–1015. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lu Z, Cheng D, Yin J, Wu R, Zhang G, Zhao
Q, Wang N, Wang F and Liang M: Antithrombin III protects against
contrast-induced nephropathy. EBioMedicine. 17:101–107. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gu X, Dong L, Liu Y and Yu F: Protective
effect of magnesium isoglycyrrhizinate on acute hepatic injury
induced by CCl4 in mice. China Pharmacist. 12:37–39. 2009.
|
33
|
DeLeve LD, McCuskey RS, Wang X, Hu L,
McCuskey MK, Epstein RB and Kanel GC: Characterization of a
reproducible rat model of hepatic veno-occlusive disease.
Hepatology. 29:1779–1791. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma JQ, Ding J, Zhao H and Liu CM: Puerarin
attenuates carbon tetrachloride-induced liver oxidative stress and
hyperlipidaemia in mouse by JNK/c-Jun/CYP7A1 pathway. Basic Clin
Pharmacol Toxicol. 115:389–395. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nakamura K, Hatano E, Miyagawa-Hayashino
A, Okuno M, Koyama Y, Narita M, Seo S, Taura K and Uemoto S:
Soluble thrombomodulin attenuates sinusoidal obstruction syndrome
in rat through suppression of high mobility group box 1. Liver Int.
34:1473–1487. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schultze AE and Roth RA: Chronic pulmonary
hypertension-the monocrotaline model and involvement of the
hemostatic system. J Toxicol Environ Health B Crit Rev. 1:271–346.
1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hassan MH, Bahashawan SA, Abdelghany TM,
Abd-Allah GM and Ghobara MM: Crocin abrogates carbon
tetrachloride-induced renal toxicity in rats via modulation of
metabolizing enzymes and diminution of oxidative stress, apoptosis,
and inflammatory cytokines. J Biochem Mol Toxicol. 29:330–339.
2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bray TM and Taylor CG: Tissue glutathione,
nutrition, and oxidative stress. Can J Physiol Pharmacol.
71:746–751. 1993. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu SC: Regulation of hepatic glutathione
synthesis: Current concepts and controversies. FASEB J.
13:1169–1183. 1999. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mulcahy RT, Bailey HH and Gipp JJ:
Up-regulation of gamma-glutamylcysteine synthetase activity in
melphalan-resistant human multiple myeloma cells expressing
increased glutathione levels. Cancer Chemother Pharmacol. 34:67–71.
1994. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li FY, Xie H, Weng L, Wang H, Cao LJ, Hao
HP and Wang GJ: Effects of diammonium glycyrrhizinate on hepatic
and intestinal UDP-Glucuronosyltransferases in rats: Implication in
herb-drug interactions. Chin J Nat Med. 14:534–540. 2016.PubMed/NCBI
|
42
|
Liu M, Xu H, Zhang L, Zhang C, Yang L, Ma
E, Liu L and Li Y: Salvianolic acid B inhibits myofibroblast
transdifferentiation in experimental pulmonary fibrosis via the
up-regulation of Nrf2. Biochem Biophys Res Commun. 495:325–331.
2018. View Article : Google Scholar
|
43
|
Wu R, Liu X, Yin J, Wu H, Cai X, Wang N,
Qian Y and Wang F: IL-6 receptor blockade ameliorates diabetic
nephropathy via inhibiting inflammasome in mice. Metabolism.
83:18–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Brouquet A, Benoist S, Julie C, Penna C,
Beauchet A, Rougier P and Nordlinger B: Risk factors for
chemotherapy-associated liver injuries: A multivariate analysis of
a group of 146 patients with colorectal metastases. Surgery.
145:362–371. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Angleton P, Chandler WL and Schmer G:
Diurnal variation of tissue-type plasminogen activator and its
rapid inhibitor (PAI-1). Circulation. 79:101–106. 1989. View Article : Google Scholar : PubMed/NCBI
|
46
|
Maiello M, Boeri D, Podesta F, Cagliero E,
Vichi M, Odetti P, Adezati L and Lorenzi M: Increased expression of
tissue plas-minogen activator and its inhibitor and reduced
fibrinolytic potential of human endothelial cells cultured in
elevated glucose. Diabetes. 41:1009–1015. 1992. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cagliero E, Roth T, Roy S, Maiello M and
Lorenzi M: Expression of genes related to the extracellular matrix
in human endothelial cells. Differential modulation by elevated
glucose concentrations, phorbol esters, and cAMP. J Biol Chem.
266:14244–14250. 1991.PubMed/NCBI
|
48
|
Nordt TK, Schneider DJ and Sobel BE:
Augmentation of the synthesis of plasminogen activator inhibitor
type-1 by precursors of insulin. A potential risk factor for
vascular disease. Circulation. 89:321–330. 1994. View Article : Google Scholar : PubMed/NCBI
|
49
|
Alessi MC, Juhan-Vague I, Kooistra T,
Declerck PJ and Collen D: Insulin stimulates the synthesis of
plasminogen activator inhibitor 1 by the human hepatocellular cell
line Hep G2. Thromb Haemost. 60:491–494. 1988. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lijnen HR: Pleiotropic functions of
plasminogen activator inhibitor-1. J Thromb Haemostasis. 3:35–45.
2005. View Article : Google Scholar
|
51
|
Kooistr T: The use of cultured human
endothelial cells and hepatocytes as an in vitro model system to
study modulation of endogenous fibrinolysis = Fibrinolysis. 4(Suppl
2): S33–S39. 1990.
|