1
|
Garcia GG, Harden PN and Chapman JR; World
Kidney Day Steering Committee 2012: The global role of kidney
transplantation. Am J Hypertens. 25:276–278. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Denton MD, Magee CC and Sayegh MH:
Immunosuppressive strategies in transplantation. Lancet.
353:1083–1091. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Einecke G, Sis B, Reeve J, Mengel M,
Campbell PM, Hidalgo LG, Kaplan B and Halloran PF:
Antibody-mediated microcirculation injury is the major cause of
late kidney transplant failure. Am J Transplant. 9:2520–2531. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Gaston RS, Cecka JM, Kasiske BL, Fieberg
AM, Leduc R, Cosio FC, Gourishankar S, Grande J, Halloran P,
Hunsicker L, et al: Evidence for antibody-mediated injury as a
major determinant of late kidney allograft failure.
Transplantation. 90:68–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sellarés J, de Freitas DG, Mengel M, Reeve
J, Einecke G, Sis B, Hidalgo LG, Famulski K, Matas A and Halloran
PF: Understanding the causes of kidney transplant failure: The
dominant role of antibody-mediated rejection and nonadherence. Am J
Transplant. 12:388–399. 2012. View Article : Google Scholar
|
6
|
Garg N, Samaniego MD, Clark D and Djamali
A: Defining the phenotype of antibody-mediated rejection in kidney
transplantation: Advances in diagnosis of antibody injury.
Transplant Rev. 31:257–267. 2017. View Article : Google Scholar
|
7
|
Furness PN and Taub N; Convergence of
European Renal Transplant Pathology Assessment Procedures Project:
International variation in the interpretation of renal transplant
biopsies: Report of the CERTPAP Project. Kidney Int. 60:1998–2012.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Reeve J, Sellarés J, Mengel M, Sis B,
Skene A, Hidalgo L, de Freitas DG, Famulski KS and Halloran PF:
Molecular diagnosis of T cell-mediated rejection in human kidney
transplant biopsies. Am J Transplant. 13:645–655. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Halloran PF, Pereira AB, Chang J, Matas A,
Picton M, De Freitas D, Bromberg J, Serón D, Sellarés J, Einecke G
and Reeve J: Microarray diagnosis of antibody-mediated rejection in
kidney transplant biopsies: An international prospective study
(INTERCOM). Am J Transplant. 13:2865–2874. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Einecke G, Reeve J, Sis B, Mengel M,
Hidalgo L, Famulski KS, Matas A, Kasiske B, Kaplan B and Halloran
PF: A molecular classifier for predicting future graft loss in late
kidney transplant biopsies. J Clin Invest. 120:1862–1872. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hidalgo LG, Sis B, Sellares J, Campbell
PM, Mengel M, Einecke G, Chang J and Halloran PF: NK cell
transcripts and NK cells in kidney biopsies from patients with
donor-specific antibodies: Evidence for NK cell involvement in
antibody-mediated rejection. Am J Transplant. 10:1812–1822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sis B, Jhangri GS, Bunnag S, Allanach K,
Kaplan B and Halloran PF: Endothelial gene expression in kidney
transplants with alloantibody indicates antibody-mediated damage
despite lack of C4d staining. Am J Transplant. 9:2312–2323. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Loupy A, Lefaucheur C, Vernerey D, Chang
J, Hidalgo LG, Beuscart T, Verine J, Aubert O, Dubleumortier S,
Duong van Huyen JP, et al: Molecular microscope strategy to improve
risk stratification in early antibody-mediated kidney allograft
rejection. J Am Soc Nephrol. 25:2267–2277. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gupta A, Broin PÓ, Bao Y, Pullman J, Kamal
L, Ajaimy M, Lubetzky M, Colovai A, Schwartz D, de Boccardo G, et
al: Clinical and molecular significance of microvascular
inflammation in transplant kidney biopsies. Kidney Int. 89:217–225.
2016. View Article : Google Scholar
|
15
|
Hayde N, Bao Y, Pullman J, Ye B, Calder
BR, Chung M, Schwartz D, Alansari A, de Boccardo G, Ling M, et al:
The clinical and molecular significance of C4d staining patterns in
renal allografts. Transplantation. 95:580–588. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hamid JS, Hu P, Roslin NM, Ling V,
Greenwood CM and Beyene J: Data integration in genetics and
genomics: Methods and challenges. Hum Genomics Proteomics.
2009:2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tseng GC, Ghosh D and Feingold E:
Comprehensive literature review and statistical considerations for
microarray meta-analysis. Nucleic Acids Res. 40:3785–3799. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hu P, Wang X, Haitsma JJ, Furmli S, Masoom
H, Liu M, Imai Y, Slutsky AS, Beyene J, Greenwood CM, et al:
Microarray meta-analysis identifies acute lung injury biomarkers in
donor lungs that predict development of primary graft failure in
recipients. PLoS One. 7:e455062012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ramasamy A, Mondry A, Holmes CC and Altman
DG: Key issues in conducting a meta-analysis of gene expression
micro-array datasets. PLoS Med. 5:e1842008. View Article : Google Scholar
|
20
|
Kang DD, Sibille E, Kaminski N and Tseng
GC: MetaQC: Objective quality control and inclusion/exclusion
criteria for genomic meta-analysis. Nucleic Acids Res. 40:e152012.
View Article : Google Scholar :
|
21
|
Li J, Gruschow S and Tewari A: Words of
wisdom. Re: Prospective assessment of prostate cancer
aggressiveness using 3-T diffusion-weighted magnetic resonance
imaging-guided biopsies versus a systematic 10-core transrectal
ultrasound prostate biopsy cohort. Eur Urol. 62:731–732. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lu S, Li J, Song C, Shen K and Tseng GC:
Biomarker detection in the integration of multiple multi-class
genomic studies. Bioinformatics. 26:333–340. 2010. View Article : Google Scholar :
|
23
|
Wang X, Lin Y, Song C, Sibille E and Tseng
GC: Detecting disease-associated genes with confounding variable
adjustment and the impact on genomic meta-analysis: With
application to major depressive disorder. BMC Bioinformatics.
13:522012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rhodes DR, Barrette TR, Rubin MA, Ghosh D
and Chinnaiyan AM: Meta-analysis of microarrays: Interstudy
validation of gene expression profiles reveals pathway
dysregulation in prostate cancer. Cancer Res. 62:4427–4433.
2002.PubMed/NCBI
|
25
|
Wilkinson B: A statistical consideration
in psychological research. Psychol Bull. 48:156–158. 1951.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Song C and Tseng GC: Hypothesis setting
and order statistic for robust genomic meta-analysis. Ann Appl
Stat. 8:777–800. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stouffer SA, Suchman EA, DeVinnery LC,
Star SA and Wiliams RM Jr: The American Soldier: Adjustment During
Army Life. Stouffer SA and Suchman EA: Princeton University Press;
New Jersey: 1949
|
28
|
Dreyfuss JM, Johnson MD and Park PJ:
Meta-analysis of glio-blastoma multiforme versus anaplastic
astrocytoma identifies robust gene markers. Mol Cancer. 8:712009.
View Article : Google Scholar
|
29
|
Nam D, Kim J, Kim SY and Kim S: GSA-SNP: A
general approach for gene set analysis of polymorphisms. Nucleic
Acids Res. 38:W749–W754. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kanehisa M, Goto S, Furumichi M, Tanabe M
and Hirakawa M: KEGG for representation and analysis of molecular
networks involving diseases and drugs. Nucleic Acids Res.
38:D355–D360. 2010. View Article : Google Scholar :
|
32
|
Kanehisa M, Goto S, Sato Y, Furumichi M
and Tanabe M: KEGG for integration and interpretation of
large-scale molecular data sets. Nucleic Acids Res. 40:D109–D114.
2012. View Article : Google Scholar :
|
33
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES, et al: Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A. 102:15545–15550. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chatr-Aryamontri A, Oughtred R, Boucher L,
Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C,
Sellam A, et al: The BioGRID interaction database: 2017 update.
Nucleic Acids Res. 45:D369–D379. 2017. View Article : Google Scholar :
|
35
|
Alonso-López D, Gutiérrez MA, Lopes KP,
Prieto C, Santamaria R and De Las Rivas J: APID interactomes:
Providing proteome-based interactomes with controlled quality for
multiple species and derived networks. Nucleic Acids Res.
44:W529–W535. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
38
|
George RP: Urinary Biomarker CXCL10:
Identifying site- specific allograft inflammation in renal
transplantation. Transplantation. 102:353–354. 2018.
|
39
|
Hricik DE, Nickerson P, Formica RN, Poggio
ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Riggs M,
et al: Multicenter validation of urinary CXCL9 as a
risk-stratifying biomarker for kidney transplant injury. Am J
Transplant. 13:2634–2644. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Saint-Mezard P, Berthier CC, Zhang H,
Hertig A, Kaiser S, Schumacher M, Wieczorek G, Bigaud M, Kehren J,
Rondeau E, et al: Analysis of independent microarray datasets of
renal biopsies identifies a robust transcript signature of acute
allograft rejection. Transpl Int. 22:293–302. 2009. View Article : Google Scholar
|
41
|
Li L, Bin LH, Li F, Liu Y, Chen D, Zhai Z
and Shu HB: TRIP6 is a RIP2-associated common signaling component
of multiple NF-kappaB activation pathways. J Cell Sci. 118:555–563.
2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Elhasid R, Krivoy N, Rowe JM, Sprecher E
and Efrati E: Glutathione S-transferase T1-null seems to be
associated with graft failure in hematopoietic SCT. Bone Marrow
Transplant. 45:1728–1731. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Haas M, Sis B, Racusen LC, Solez K, Glotz
D, Colvin RB, Castro MC, David DS, David-Neto E, Bagnasco SM, et
al: Banff 2013 meeting report: Inclusion of c4d-negative
antibody-mediated rejection and antibody-associated arterial
lesions. Am J Transplant. 14:272–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bickerstaff MC, Botto M, Hutchinson WL,
Herbert J, Tennent GA, Bybee A, Mitchell DA, Cook HT, Butler PJ,
Walport MJ, et al: Serum amyloid P component controls chromatin
degradation and prevents antinuclear autoimmunity. Nat Med.
5:694–697. 1999. View
Article : Google Scholar : PubMed/NCBI
|