1
|
Sandell LJ, Sugai JV and Trippel SB:
Expression of collagens I, II, X, and XI and aggrecan mRNAs by
bovine growth plate chondrocytes in situ. J Orthop Res. 12:1–14.
1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cleland KA, James MJ, Neumann MA, Gibson
RA and Cleland LG: Differences in fatty acid composition of
immature and mature articular cartilage in humans and sheep.
Lipids. 30:949–953. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Muir H: The chondrocyte, architect of
cartilage Biomechanics, structure, function and molecular biology
of cartilage matrix macromolecules. Bioessays. 17:1039–1048. 1995.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kinner B, Capito RM and Spector M:
Regeneration of articular cartilage. Adv Biochem Eng Biotechnol.
94:91–123. 2005.PubMed/NCBI
|
5
|
Goldring MB, Tsuchimochi K and Ijiri K:
The control of chon-drogenesis. J Cell Biochem. 97:33–44. 2006.
View Article : Google Scholar
|
6
|
Aigner T, Zhu Y, Chansky HH, Matsen FA
III, Maloney WJ and Sandell LJ: Reexpression of type IIA
procollagen by adult articular chondrocytes in osteoarthritic
cartilage. Arthritis Rheum. 42:1443–1450. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng A and Genever PG: SOX9 determines
RUNX2 trans-activity by directing intracellular degradation. J Bone
Miner Res. 25:2680–2689. 2010. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Yamashita S, Andoh M, Ueno-Kudoh H, Sato
T, Miyaki S and Asahara H: Sox9 directly promotes Bapx1 gene
expression to repress Runx2 in chondrocytes. Exp Cell Res.
315:2231–2240. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen H, Ghori-Javed FY, Rashid H, Adhami
MD, Serra R, Gutierrez SE and Javed A: Runx2 regulates endochondral
ossification through control of chondrocyte proliferation and
differentiation. J Bone Miner Res. 29:2653–2665. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ulrich C, Rolauffs B, Abele H, Bonin M,
Nieselt K, Hart ML and Aicher WK: Low osteogenic differentiation
potential of placenta-derived mesenchymal stromal cells correlates
with low expression of the transcription factors Runx2 and Twist2.
Stem Cells Dev. 22:2859–2872. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Buckwalter JA and Mankin HJ: Articular
cartilage: Tissue design and chondrocyte-matrix interactions. Instr
Course Lect. 47:477–486. 1998.PubMed/NCBI
|
12
|
Goldring MB and Goldring SR:
Osteoarthritis. J Cell Physiol. 213:626–634. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bi W, Deng JM, Zhang Z, Behringer RR and
de Crombrugghe B: Sox9 is required for cartilage formation. Nat
Genet. 22:85–89. 1999. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Akiyama H, Chaboissier MC, Martin JF,
Schedl A and de Crombrugghe B: The transcription factor Sox9 has
essential roles in successive steps of the chondrocyte
differentiation pathway and is required for expression of Sox5 and
Sox6. Genes Dev. 16:2813–2828. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Furumatsu T, Tsuda M, Taniguchi N, Tajima
Y and Asahara H: Smad3 induces chondrogenesis through the
activation of SOX9 via CREB-binding protein/p300 recruitment. J
Biol Chem. 280:8343–8350. 2005. View Article : Google Scholar
|
16
|
Akiyama H and Lefebvre V: Unraveling the
transcriptional regulatory machinery in chondrogenesis. J Bone
Miner Metab. 29:390–395. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Linn FC and Sokoloff L: Movement and
Composition of interstitial fluid of cartilage. Arthritis Rheum.
8:481–494. 1965. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yamashita S, Miyaki S, Kato Y, Yokoyama S,
Sato T, Barrionuevo F, Akiyama H, Scherer G, Takada S and Asahara
H: L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA
expression by strengthening dimeric Sox9 activity. J Biol Chem.
287:22206–22215. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lefebvre V, Behringer RR and de
Crombrugghe B: L-Sox5, Sox6 and Sox9 control essential steps of the
chondrocyte differentiation pathway. Osteoarthritis Cartilage.
9(Suppl A): S69–S75. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ng LJ, Wheatley S, Muscat GE,
Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS
and Koopman P: SOX9 binds DNA, activates transcription, and
coexpresses with type II collagen during chondrogenesis in the
mouse. Dev Biol. 183:108–121. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao Q, Eberspaecher H, Lefebvre V and De
Crombrugghe B: Parallel expression of Sox9 and Col2a1 in cells
undergoing chondrogenesis. Dev Dyn. 209:377–386. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hattori T, Muller C, Gebhard S, Bauer E,
Pausch F, Schlund B, Bösl MR, Hess A, Surmann-Schmitt C, von der
Mark H, et al: SOX9 is a major negative regulator of cartilage
vascularization, bone marrow formation and endochondral
ossification. Development. 137:901–911. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Foster JW, Dominguez-Steglich MA, Guioli
S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young
ID, Goodfellow PN, et al: Campomelic dysplasia and autosomal sex
reversal caused by mutations in an SRY-related gene. Nature.
372:525–530. 1994. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bracken AP and Helin K: Polycomb group
proteins: Navigators of lineage pathways led astray in cancer. Nat
Rev Cancer. 9:773–784. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tsai HC and Baylin SB: Cancer epigenetics:
Linking basic biology to clinical medicine. Cell Res. 21:502–517.
2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Klymenko T, Papp B, Fischle W, Köcher T,
Schelder M, Fritsch C, Wild B, Wilm M and Müller J: A Polycomb
group protein complex with sequence-specific DNA-binding and
selective methyl-lysine-binding activities. Genes Dev.
20:1110–1122. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee K, Na W, Maeng JH, Wu H and Ju BG:
Regulation of DU145 prostate cancer cell growth by Scm-like with
four mbt domains 2. J Biosci. 38:105–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu S, Trievel RC and Rice JC: Human SFMBT
is a transcriptional repressor protein that selectively binds the
N-terminal tail of histone H3. FEBS Lett. 581:3289–3296. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang W, Zhong B, Sun J, Cao J, Tian J,
Zhong N, Zhao W, Tian L, Xu P, Guo D, et al: Down-regulated HS6ST2
in osteoarthritis and Kashin-Beck disease inhibits cell viability
and influences expression of the genes relevant to aggrecan
metabolism of human chondrocytes. Rheumatology (Oxford).
50:2176–2186. 2011. View Article : Google Scholar
|
30
|
Hussain S, Sun M, Min Z, Guo Y, Xu J,
Mushtaq N, Heng L, Huang H, Zhao Y, Yuan Y, et al: Down-regulated
in OA cartilage, SFMBT2 contributes to NF-κB mediated ECM
degradation. J Cell Mol Med. Aug 22–2018. View Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
32
|
Wei X, Peng G, Zheng S and Wu X:
Differentiation of umbilical cord mesenchymal stem cells into
steroidogenic cells in comparison to bone marrow mesenchymal stem
cells. Cell Prolif. 45:101–110. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fox JG, Cohen BJ and Loew FM: Laboratory
Animal Medicine. Academic Press Inc, Harcourt Brace Jovanovich; San
Diego, CA: 1984
|
34
|
Miri K, Latham K, Panning B, Zhong Z,
Andersen A and Varmuza S: The imprinted polycomb group gene Sfmbt2
is required for trophoblast maintenance and placenta development.
Development. 140:4480–4489. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Horton WA: Skeletal development: Insights
from targeting the mouse genome. Lancet. 362:560–569. 2003.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Lefebvre V, Li P and de Crombrugghe B: A
new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in
chondro-genesis and cooperatively activate the type II collagen
gene. Embo J. 17:5718–5733. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Leung KK, Ng LJ, Ho KK, Tam PP and Cheah
KS: Different cis-regulatory DNA elements mediate developmental
stage- and tissue-specific expression of the human COL2A1 gene in
transgenic mice. J Cell Biol. 141:1291–1300. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zuscik MJ, Hilton MJ, Zhang X, Chen D and
O'Keefe RJ: Regulation of chondrogenesis and chondrocyte
differentiation by stress. J Clin Invest. 118:429–438. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lefebvre V and Smits P: Transcriptional
control of chondrocyte fate and differentiation. Birth Defects Res
C Embryo Today. 75:200–212. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Atsumi T, Miwa Y, Kimata K and Ikawa Y: A
chondrogenic cell line derived from a differentiating culture of
AT805 teratocarcinoma cells. Cell Differ Dev. 30:109–116. 1990.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Shukunami C, Shigeno C, Atsumi T, Ishizeki
K, Suzuki F and Hiraki Y: Chondrogenic differentiation of clonal
mouse embryonic cell line ATDC5 in vitro: Differentiation-dependent
gene expression of parathyroid hormone (PTH)/PTH-related peptide
receptor. J Cell Biol. 133:457–468. 1996. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shukunami C, Ohta Y, Sakuda M and Hiraki
Y: Sequential progression of the differentiation program by bone
morphogenetic protein-2 in chondrogenic cell line ATDC5. Exp Cell
Res. 241:1–11. 1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Henry SP, Liang S, Akdemir KC and de
Crombrugghe B: The postnatal role of Sox9 in cartilage. J Bone
Miner Res. 27:2511–2525. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Goldring MB: Chondrogenesis, chondrocyte
differentiation, and articular cartilage metabolism in health and
osteoarthritis. Ther Adv Musculoskelet Dis. 4:269–285. 2012.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Salminen H, Vuorio E and Saamanen AM:
Expression of Sox9 and type IIA procollagen during attempted repair
of articular cartilage damage in a transgenic mouse model of
osteoarthritis. Arthritis Rheum. 44:947–955. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Binette F, McQuaid DP, Haudenschild DR,
Yaeger PC, McPherson JM and Tubo R: Expression of a stable
articular cartilage phenotype without evidence of hypertrophy by
adult human articular chondrocytes in vitro. J Orthop Res.
16:207–216. 1998. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hoyland JA, Thomas JT, Donn R, Marriott A,
Ayad S, Boot-Handford RP, Grant ME and Freemont AJ: Distribution of
type X collagen mRNA in normal and osteoarthritic human cartilage.
Bone Miner. 15:151–163. 1991. View Article : Google Scholar : PubMed/NCBI
|
48
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri
K and Li Y: Defining the roles of inflammatory and anabolic
cytokines in cartilage metabolism. Ann Rheum Dis. 67(Suppl 3):
iii75–iii82. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Goldring MB and Marcu KB: Cartilage
homeostasis in health and rheumatic diseases. Arthritis Res Ther.
11:2242009. View
Article : Google Scholar : PubMed/NCBI
|
50
|
Berenbaum F: Osteoarthritis as an
inflammatory disease (osteoarthritis is not osteoarthrosis!).
Osteoarthritis Cartilage. 21:16–21. 2013. View Article : Google Scholar
|
51
|
Pelletier JP and Martel-Pelletier J:
Evidence for the involvement of interleukin 1 in human
osteoarthritic cartilage degradation: Protective effect of NSAID. J
Rheumatol. 18:19–27. 1989.
|
52
|
Farahat MN, Yanni G, Poston R and Panayi
GS: Cytokine expression in synovial membranes of patients with
rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 52:870–875.
1993. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tetlow LC, Adlam DJ and Woolley DE: Matrix
metalloproteinase and proinflammatory cytokine production by
chondrocytes of human osteoarthritic cartilage: Associations with
degenerative changes. Arthritis Rheum. 44:585–594. 2001. View Article : Google Scholar : PubMed/NCBI
|
54
|
Muñoz-Valle JF, Oregón-Romero E,
Rangel-Villalobos H, Martínez-Bonilla GE, Castañeda-Saucedo E,
Salgado-Goytia L, Leyva-Vázquez MA, Illades-Aguiar B,
Alarcón-Romero Ldel C, Espinoza-Rojo M and Parra-Rojas I: High
expression of TNF alpha is associated with -308 and -238 TNF alpha
polymorphisms in knee osteoarthritis. Clin Exp Med. 14:61–67. 2014.
View Article : Google Scholar
|
55
|
Kim KI, Park YS and Im GI: Changes in the
epigenetic status of the SOX-9 promoter in human osteoarthritic
cartilage. J Bone Miner Res. 28:1050–1060. 2013. View Article : Google Scholar
|
56
|
Sitcheran R, Cogswell PC and Baldwin AS
Jr: NF-kappaB mediates inhibition of mesenchymal cell
differentiation through a posttranscriptional gene silencing
mechanism. Genes Dev. 17:2368–2373. 2003. View Article : Google Scholar : PubMed/NCBI
|
57
|
Schroeppel JP, Crist JD, Anderson HC and
Wang J: Molecular regulation of articular chondrocyte function and
its significance in osteoarthritis. Histol Histopathol. 26:377–394.
2011.PubMed/NCBI
|
58
|
Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim
BJ, Min BH and Chun JS: Hypoxia-inducible factor-2alpha is a
catabolic regulator of osteoarthritic cartilage destruction. Nat
Med. 16:687–693. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Mueller MB and Tuan RS: Anabolic/Catabolic
balance in pathogenesis of osteoarthritis: Identifying molecular
targets. PM R. 3(Suppl 1): S3–S11. 2011. View Article : Google Scholar : PubMed/NCBI
|
60
|
Madry H, Luyten FP and Facchini A:
Biological aspects of early osteoarthritis. Knee Surg Sports
Traumatol Arthrosc. 20:407–422. 2012. View Article : Google Scholar
|
61
|
Wang M, Shen J, Jin H, Im HJ, Sandy J and
Chen D: Recent progress in understanding molecular mechanisms of
cartilage degeneration during osteoarthritis. Ann N Y Acad Sci.
1240:61–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
62
|
Matyas JR, Adams ME, Huang D and Sandell
LJ: Discoordinate gene expression of aggrecan and type II collagen
in experimental osteoarthritis. Arthritis Rheum. 38:420–425. 1995.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Cs-Szabó G, Melching LI, Roughley PJ and
Glant TT: Changes in messenger RNA and protein levels of
proteoglycans and link protein in human osteoarthritic cartilage
samples. Arthritis Rheum. 40:1037–1045. 1997. View Article : Google Scholar : PubMed/NCBI
|
64
|
Lefebvre V and de Crombrugghe B: Toward
understanding SOX9 function in chondrocyte differentiation. Matrix
Biol. 16:529–540. 1998. View Article : Google Scholar : PubMed/NCBI
|
65
|
Lefebvre V, Huang W, Harley VR, Goodfellow
PN and de Crombrugghe B: SOX9 is a potent activator of the
chondrocyte-specific enhancer of the pro alpha1(II) collagen gene.
Mol Cell Biol. 17:2336–2346. 1997. View Article : Google Scholar : PubMed/NCBI
|