Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review)
- Authors:
- Jorge Reyes‑García
- Edgar Flores‑Soto
- Abril Carbajal‑García
- Bettina Sommer
- Luis M. Montaño
-
Affiliations: Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México, Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México - Published online on: October 2, 2018 https://doi.org/10.3892/ijmm.2018.3910
- Pages: 2998-3008
-
Copyright: © Reyes‑García et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Albert AP, Piper AS and Large WA: Properties of a constitutively active Ca2+-permeable non-selective cation channel in rabbit ear artery myocytes. J Physiol. 549:143–156. 2003. View Article : Google Scholar : PubMed/NCBI | |
Demirel E, Laskey RE, Purkerson S and van Breemen C: The passive calcium leak in cultured porcine aortic endothelial cells. Biochem Biophys Res Commun. 191:1197–1203. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fayazi AH, Lapidot SA, Huang BK, Tucker RW and Phair RD: Resolution of the basal plasma membrane calcium flux in vascular smooth muscle cells. Am J Physiol. 270:H1972–H1978. 1996.PubMed/NCBI | |
Hodgkin AL and Keynes RD: Movements of labelled calcium in squid giant axons. J Physiol. 138:253–281. 1957. View Article : Google Scholar : PubMed/NCBI | |
Holland WC and Sekul A: Influence of potassium and calcium ions on the effect of ouabain on Ca45 entry and contracture in rabbit atria. J Pharmacol Exp Ther. 133:288–294. 1961.PubMed/NCBI | |
Rutter GA, Hodson DJ, Chabosseau P, Haythorne E, Pullen TJ and Leclerc I: Local and regional control of calcium dynamics in the pancreatic islet. Diabetes Obes Metab. 19(Suppl 1): S30–S41. 2017. View Article : Google Scholar | |
Wu X, Weng L, Zhang J, Liu X and Huang J: The plasma membrane calcium ATPases in calcium signaling network. Curr Protein Pept Sci. 19:813–822. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bazan-Perkins B, Flores-Soto E, Barajas-Lopez C and Montaño LM: Role of sarcoplasmic reticulum Ca2+ content in Ca2+ entry of bovine airway smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 368:277–283. 2003. View Article : Google Scholar | |
Carbajal V, Vargas MH, Flores-Soto E, Martinez-Cordero E, Bazán-Perkins B and Montaño LM: LTD4 induces hyperresponsiveness to histamine in bovine airway smooth muscle: Role of SR-ATPase Ca2+ pump and tyrosine kinase. Am J Physiol Lung Cell Mol Physiol. 288:L84–L92. 2005. View Article : Google Scholar | |
Flores-Soto E, Reyes-Garcia J, Sommer B and Montaño LM: Sarcoplasmic reticulum Ca2+ refilling is determined by L-type Ca2+ and store operated Ca2+ channels in guinea pig airway smooth muscle. Eur J Pharmacol. 721:21–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
Montaño LM and Bazán-Perkins B: Resting calcium influx in airway smooth muscle. Can J Physiol Pharmacol. 83:717–723. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Ma R and Gong J: Investigation of testosterone-mediated non-transcriptional inhibition of Ca2+ in vascular smooth muscle cells. Biomed Rep. 4:197–202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Braunstein TH, Inoue R, Cribbs L, Oike M, Ito Y, Holstein-Rathlou NH and Jensen LJ: The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res. 46:138–151. 2009. View Article : Google Scholar | |
Wakle-Prabagaran M, Lorca RA, Ma X, Stamnes SJ, Amazu C, Hsiao JJ, Karch CM, Hyrc KL, Wright ME and England SK: BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells. Proc Natl Acad Sci USA. 113:E2335–E2344. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aguilar HN and Mitchell BF: Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 16:725–744. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asano M, Nomura Y, Hayakawa M, Ito KM, Uyama Y, Imaizumi Y and Watanabe M: Increased Ca2+ influx in the resting state maintains the myogenic tone and activates charyb-dotoxin-sensitive K+ channels in femoral arteries from young SHR. Clin Exp Pharmacol Physiol Suppl. 22(Suppl): S225–S227. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bae YM, Park MK, Lee SH, Ho WK and Earm YE: Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit. J Physiol. 514:747–758. 1999. View Article : Google Scholar | |
Flores-Soto E, Reyes-García J, Carbajal-García A, Campuzano-González E, Perusquía M, Sommer B and Montaño LM: Sex steroids effects on guinea pig airway smooth muscle tone and intracellular Ca2+ basal levels. Mol Cell Endocrinol. 439:444–456. 2017. View Article : Google Scholar | |
Janssen LJ: T-type and L-type Ca2+ currents in canine bronchial smooth muscle: Characterization and physiological roles. Am J Physiol. 272:C1757–C1765. 1997. View Article : Google Scholar : PubMed/NCBI | |
Montaño LM, Barajas-Lopez C and Daniel EE: Canine bronchial sustained contraction in Ca2+-free medium: Role of intracellular Ca2+. Can J Physiol Pharmacol. 74:1236–1248. 1996. View Article : Google Scholar | |
Sommer B, Flores-Soto E, Reyes-García J, Diaz-Hernández V, Carbajal V and Montaño LM: Na+ permeates through L-type Ca2+ channel in bovine airway smooth muscle. Eur J Pharmacol. 782:77–88. 2016. View Article : Google Scholar : PubMed/NCBI | |
Worley JF III and Kotlikoff MI: Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol. 259:L468–L480. 1990.PubMed/NCBI | |
Bolton TB: Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 59:606–718. 1979. View Article : Google Scholar : PubMed/NCBI | |
Godin N and Rousseau E: TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem. 296:193–201. 2007. View Article : Google Scholar | |
Hallam TJ and Rink TJ: Receptor-mediated Ca2+ entry: Diversity of function and mechanism. Trends Pharmacol Sci. 10:8–10. 1989. View Article : Google Scholar : PubMed/NCBI | |
Martinsen A, Dessy C and Morel N: Regulation of calcium chan-nels in smooth muscle: New insights into the role of myosin light chain kinase. Channels (Austin). 8:402–413. 2014. View Article : Google Scholar | |
McFadzean I and Gibson A: The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol. 135:1–13. 2002. View Article : Google Scholar : PubMed/NCBI | |
Murray RK and Kotlikoff MI: Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol. 435:123–144. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ay B, Prakash YS, Pabelick CM and Sieck GC: Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 286:L909–L917. 2004. View Article : Google Scholar | |
Bazan-Perkins B, Carbajal V, Sommer B, Macías-Silva M, González-Martínez M, Valenzuela F, Daniel EE and Montaño LM: Involvement of different Ca2+ pools during the canine bronchial sustained contraction in Ca2+-free medium: Lack of effect of PKC inhibition. Naunyn Schmiedebergs Arch Pharmacol. 358:567–573. 1998. View Article : Google Scholar | |
Putney JW Jr: A model for receptor-regulated calcium entry. Cell Calcium. 7:1–12. 1986. View Article : Google Scholar : PubMed/NCBI | |
Sweeney M, McDaniel SS, Platoshyn O, Zhang S, Yu Y, Lapp BR, Zhao Y, Thistlethwaite PA and Yuan JX: Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 1985. 92:1594–1602. 2002. View Article : Google Scholar | |
Avila-Medina J, Mayoral-González I, Domínguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, Rosado JA and Smani T: The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol. 9:2572018. View Article : Google Scholar : PubMed/NCBI | |
Baron CB, Cunningham M, Strauss JF III and Coburn RF: Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci USA. 81:6899–6903. 1984. View Article : Google Scholar : PubMed/NCBI | |
Berridge MJ: Inositol trisphosphate and calcium signalling. Nature. 361:315–325. 1993. View Article : Google Scholar : PubMed/NCBI | |
Song T, Hao Q, Zheng YM, Liu QH and Wang YX: Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 309:L1455–L1466. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bazan-Perkins B, Sánchez-Guerrero E, Carbajal V, Barajas-López C and Montaño LM: Sarcoplasmic reticulum Ca2+ depletion by caffeine and changes of [Ca2+]i during refilling in bovine airway smooth muscle cells. Arch Med Res. 31:558–563. 2000. View Article : Google Scholar | |
Sieck GC, Kannan MS and Prakash YS: Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can J Physiol Pharmacol. 75:878–888. 1997. View Article : Google Scholar : PubMed/NCBI | |
Matsuki K, Kato D, Takemoto M, Suzuki Y, Yamamura H, Ohya S, Takeshima H and Imaizumi Y: Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol. 315:C1–C9. 2018. View Article : Google Scholar | |
Zhao C, Wu AY, Yu X, Gu Y, Lu Y, Song X, An N and Shang Y: Microdomain elements of airway smooth muscle in calcium regulation and cell proliferation. J Physiol Pharmacol. 69:2018. | |
Blaustein MP and Lederer WJ: Sodium/calcium exchange: Its physiological implications. Physiol Rev. 79:763–854. 1999. View Article : Google Scholar : PubMed/NCBI | |
Eisner DA and Lederer WJ: Na-Ca exchange: Stoichiometry and electrogenicity. Am J Physiol. 248:C189–C202. 1985. View Article : Google Scholar : PubMed/NCBI | |
Janssen LJ, Walters DK and Wattie J: Regulation of [Ca2+]i in canine airway smooth muscle by Ca2+-ATPase and Na+/Ca2+ exchange mechanisms. Am J Physiol. 273:L322–L330. 1997.PubMed/NCBI | |
Lipskaia L, Bobe R, Chen J, Turnbull IC, Lopez JJ, Merlet E, Jeong D, Karakikes I, Ross AS, Liang L, et al: Synergistic role of protein phosphatase inhibitor 1 and sarco/endoplasmic reticulum Ca2+-ATPase in the acquisition of the contractile phenotype of arterial smooth muscle cells. Circulation. 129:773–785. 2014. View Article : Google Scholar | |
Liu B, Zhang B, Huang S, Yang L, Roos CM, Thompson MA, Prakash YS, Zang J, Miller JD and Guo R: Ca2+ Entry through reverse mode Na+/Ca2+ Exchanger contributes to store operated channel-mediated neointima formation after arterial injury. Can J Cardiol. 34:791–799. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mazur II, Veklich TO, Shkrabak OA, Mohart NA, Demchenko AM, Gerashchenko IV, Rodik RV, Kalchenko VI and Kosterin SO: Selective inhibition of smooth muscle plasma membrane transport Ca2+, Mg2+-ATPase by calixarene C-90 and its activation by IPT-35 compound. Gen Physiol Biophys. 37:223–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama K, Azuma YT, Morioka A, Yoshida N, Teramoto M, Tanioka K, Kita S, Hayashi S, Nakajima H, Iwamoto T and Takeuchi T: Roles of Na+/Ca2+ exchanger isoforms NCX1 and NCX2 in motility in mouse ileum. Naunyn Schmiedebergs Arch Pharmacol. 389:1081–1090. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sommer B, Flores-Soto E and González-Avila G: Cellular Na+ handling mechanisms involved in airway smooth muscle contraction (Review). Int J Mol Med. 40:3–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang WB and Kwan CY: Pharmacological evidence that potentiation of plasmalemmal Ca2+-extrusion is functionally coupled to inhibition of SR Ca2+-ATPases in vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 389:447–455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Poburko D, Lhote P, Szado T, Behra T, Rahimina R, McManus B, Van Breemen C and Ruegg UT: Basal calcium entry in vascular smooth muscle. Eur J Pharmacol. 505:19–29. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bean BP: Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 51:367–384. 1989. View Article : Google Scholar : PubMed/NCBI | |
Yu J and Bose R: Calcium channels in smooth muscle. Gastroenterology. 100:1448–1460. 1991. View Article : Google Scholar : PubMed/NCBI | |
Green KA, Small RC and Foster RW: The properties of voltage-operated Ca2+-channels in bovine isolated trachealis cells. Pulm Pharmacol. 6:49–62. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hisada T, Kurachi Y and Sugimoto T: Properties of membrane currents in isolated smooth muscle cells from guineapig trachea. Pflugers Arch. 416:151–161. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kotlikoff MI: Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol. 254:C793–C801. 1988. View Article : Google Scholar : PubMed/NCBI | |
Marthan R, Martin C, Amedee T and Mironneau J: Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol (1985). 66:1706–1714. 1989. View Article : Google Scholar | |
Hirota S and Janssen LJ: Store-refilling involves both L-type calcium channels and reverse-mode sodium-calcium exchange in airway smooth muscle. Eur Respir J. 30:269–278. 2007. View Article : Google Scholar : PubMed/NCBI | |
Catterall WA, Perez-Reyes E, Snutch TP and Striessnig J: International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 57:411–425. 2005. View Article : Google Scholar : PubMed/NCBI | |
Du W, McMahon TJ, Zhang ZS, Stiber JA, Meissner G and Eu JP: Excitation-contraction coupling in airway smooth muscle. J Biol Chem. 281:30143–30151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Garcia J, Flores-Soto E, Solis-Chagoyan H, Sommer B, Diaz-Hernandez V, Garcia-Hernandez LM and Montaño LM: Tumor necrosis factor alpha inhibits L-type Ca2+ channels in sensitized guinea pig airway smooth muscle through ERK 1/2 pathway. Mediators Inflamm. 2016.5972302:2016. | |
Janssen LJ and Daniel EE: Depolarizing agents induce oscillations in canine bronchial smooth muscle membrane potential: Possible mechanisms. J Pharmacol Exp Ther. 259:110–117. 1991.PubMed/NCBI | |
Xu KY, Zhu W and Xiao RP: Serine496 of β2 subunit of L-type Ca2+ channel participates in molecular crosstalk between activation of (Na++K+)-ATPase and the channel. Biochem Biophys Res Commun. 402:319–323. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Sun J, Jin R, Liang Y, Liu YY and Xu YD: Influence of acupuncture on expression of T-type calcium channel protein in airway smooth muscle cell in airway remodeling rats with asthma. Zhongguo Zhen Jiu. 32:534–540. 2012.In Chinese. PubMed/NCBI | |
Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F and Lory P: Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci USA. 112:13705–13710. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wylam ME, Gungor N, Mitchell RW and Umans JG: Eosinophils, major basic protein, and polycationic peptides augment bovine airway myocyte Ca2+ mobilization. Am J Physiol. 274:L997–L1005. 1998. | |
Yocum GT, Chen J, Choi CH, Townsend EA, Zhang Y, Xu D, Fu XW, Sanderson MJ and Emala CW: Role of transient receptor potential vanilloid 1 in the modulation of airway smooth muscle tone and calcium handling. Am J Physiol Lung Cell Mol Physiol. 312:L812–L821. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dietrich A, Chubanov V, Kalwa H, Rost BR and Gudermann T: Cation channels of the transient receptor potential superfamily: Their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther. 112:744–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ong HL, Brereton HM, Harland ML and Barritt GJ: Evidence for the expression of transient receptor potential proteins in guinea pig airway smooth muscle cells. Respirology. 8:23–32. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T and Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 397:259–263. 1999. View Article : Google Scholar : PubMed/NCBI | |
Storch U, Forst AL, Pardatscher F, Erdogmus S, Philipp M and Gregoritza M: Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. Proc Natl Acad Sci USA. 114:E37–E46. 2017. View Article : Google Scholar | |
Li SW, Westwick J and Poll CT: Receptor-operated Ca2+ influx channels in leukocytes: A therapeutic target. Trends Pharmacol Sci. 23:63–70. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhpoff A and Schultz G: Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron. 16:1189–1196. 1996. View Article : Google Scholar : PubMed/NCBI | |
Xu SZ and Beech DJ: TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res. 88:84–87. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Babnigg G and Villereal ML: Functional significance of human trp1 and trp3 in store-operated Ca2+ entry in HEK-293 cells. Am J Physiol Cell Physiol. 278:C526–C536. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gailly P and Colson-Van Schoor M: Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium. 30:157–165. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, et al: Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem. 274:27359–27370. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H and Gailly P: Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol. 158:1089–1096. 2002. View Article : Google Scholar : PubMed/NCBI | |
Albert AP, Pucovsky V, Prestwich SA and Large WA: TRPC3 properties of a native constitutively active Ca2+-permeable cation channel in rabbit ear artery myocytes. J Physiol. 571:361–369. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xiao JH, Zheng YM, Liao B and Wang YX: Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol. 43:17–25. 2010. View Article : Google Scholar : | |
Trebak M, Bird GS, McKay RR and Putney JW Jr: Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem. 277:21617–21623. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, et al: Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA. 106:5400–5405. 2009. View Article : Google Scholar : PubMed/NCBI | |
Albert AP, Piper AS and Large WA: Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes. J Physiol. 566:769–780. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mamoon AM, Smith J, Baker RC and Farley JM: Activation of protein kinase A increases phospholipase D activity and inhibits phospholipase D activation by acetylcholine in tracheal smooth muscle. J Pharmacol Exp Ther. 291:1188–1195. 1999.PubMed/NCBI | |
Monick MM, Carter AB, Gudmundsson G, Mallampalli R, Powers LS and Hunninghake GW: A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol. 162:3005–3012. 1999.PubMed/NCBI | |
Ito S, Kume H, Naruse K, Kondo M, Takeda N, Iwata S, Hasegawa Y and Sokabe M: A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 38:407–413. 2008. View Article : Google Scholar | |
Leung FP, Yung LM, Yao X, Laher I and Huang Y: Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol. 153:846–857. 2008. View Article : Google Scholar | |
Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG: Orai1 is an essential pore subunit of the CRAC channel. Nature. 443:230–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, et al: STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 169:435–445. 2005. View Article : Google Scholar : PubMed/NCBI | |
Peel SE, Liu B and Hall IP: ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 38:744–749. 2008. View Article : Google Scholar : PubMed/NCBI | |
Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA and Treback M: Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: Role in proliferation and migration. FASEB J. 23:2425–2437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shuttleworth TJ: Orai3-the ‘exceptional’ Orai. J Physiol. 590:241–257. 2012. View Article : Google Scholar | |
Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrel JE Jr and Meyer T: STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 15:1235–1241. 2005. View Article : Google Scholar : PubMed/NCBI | |
Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peel SE, Liu B and Hall IP: A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir Res. 7:1192006. View Article : Google Scholar : PubMed/NCBI | |
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA and Cahalan MD: STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 437:902–905. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL and Birnbaumer L: Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA. 104:4682–4687. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dai JM, Kuo KH, Leo JM, van Breemen C and Lee CH: Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol. 290:L459–L469. 2006. View Article : Google Scholar | |
DiPolo R and Beaugé L: Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol Rev. 86:155–203. 2006. View Article : Google Scholar | |
Philipson KD and Nicoll DA: Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol. 62:111–133. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lytton J: Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochem J. 406:365–382. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khananshvili D: The SLC8 gene family of sodium-calcium exchangers (NCX)-structure, function, and regulation in health and disease. Mol Aspects Med. 34:220–235. 2013. View Article : Google Scholar : PubMed/NCBI | |
A lga ra-Sua rez P, Mejia-Elizondo R, Sims SM, Saavedra-Alanis VM and Espinosa-Tanguma R: The 1.3 isoform of Na+-Ca2+ exchanger expressed in guinea pig tracheal smooth muscle is less sensitive to KB-R7943. J Physiol Biochem. 66:117–125. 2010. View Article : Google Scholar | |
Rahman M, Inman M, Kiss L and Janssen LJ: Reverse-mode NCX current in mouse airway smooth muscle: Na+ and voltage dependence, contributions to Ca2+ influx and contraction, and altered expression in a model of allergen-induced hyperresponsiveness. Acta Physiol (Oxf). 205:279–291. 2012. View Article : Google Scholar | |
Sathish V, Delmotte PF, Thompson MA, Pabelick CM, Sieck GC and Prakash YS: Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One. 6:e236622011. View Article : Google Scholar : PubMed/NCBI | |
Brini M and Carafoli E: Calcium pumps in health and disease. Physiol Rev. 89:1341–1378. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carafoli E: Calcium pump of the plasma membrane. Physiol Rev. 71:129–153. 1991. View Article : Google Scholar : PubMed/NCBI | |
Darby PJ, Kwan CY and Daniel EE: Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca2+ handling. Am J Physiol Lung Cell Mol Physiol. 279:L1226–L1235. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen YF, Cao J, Zhong JN, Chen X, Cheng M, Yang J and Gao YD: Plasma membrane Ca2+-ATPase regulates Ca2+ signaling and the proliferation of airway smooth muscle cells. Eur J Pharmacol. 740:733–741. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bobe R, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Kovács T and Enouf J: Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene. J Biol Chem. 279:24297–24306. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, Siew L, Simcock DE, McVicker CG, Kanabar V, et al: Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci USA. 106:10775–10780. 2009. View Article : Google Scholar | |
Helli PB and Janssen LJ: Properties of a store-operated nonse-lective cation channel in airway smooth muscle. Eur Respir J. 32:1529–1539. 2008. View Article : Google Scholar : PubMed/NCBI | |
Perusquia M, Flores-Soto E, Sommer B, Campuzano-González E, Martinez-Villa I, Martinez-Banderas AI and Montaño LM: Testosterone-induced relaxation involves L-type and store-operated Ca2+ channels blockade, and PGE2 in guinea pig airway smooth muscle. Pflugers Arch. 467:767–777. 2015. View Article : Google Scholar | |
Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS and Sieck GC: Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 297:L26–L34. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sathish V, Leblebici F, Kip SN, Thompson A, Pabelick CM, Prakash YS and Sieck GC: Regulation of sarcoplasmic reticulum Ca2+ reuptake in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 294:L787–L796. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guerrero-Hernandez A, Ávila G and Rueda A: Ryanodine receptors as leak channels. Eur J Pharmacol. 739:26–38. 2014. View Article : Google Scholar | |
Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, Wess J and Wang YX: Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci USA. 106:11418–11423. 2009. View Article : Google Scholar | |
Deshpande DA, Walseth TF, Panettieri RA and Kannan MS: CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J. 17:452–454. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rusinko N and Lee HC: Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 264:11725–11731. 1989.PubMed/NCBI | |
White TA, Johnson S, Walseth TF, Lee HC, Graeff RM, Munshi CB, Prakash YS, Sieck GC and Kannan MS: Subcellular localization of cyclic ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities in porcine airway smooth muscle. Biochim Biophys Acta. 1498:64–71. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ross CA, Danoff SK, Schell MJ, Snyder SH and Ullrich A: Three additional inositol 1,4,5-trisphosphate receptors: Molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci USA. 89:4265–4269. 1992. View Article : Google Scholar : PubMed/NCBI | |
Taylor CW, Genazzani AA and Morris SA: Expression of inositol trisphosphate receptors. Cell Calcium. 26:237–251. 1999. View Article : Google Scholar | |
Narayanan D, Adebiyi A and Jaggar JH: Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol. 302:H2190–H2210. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB and Kotlikoff MI: FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol. 286:C538–C546. 2004. View Article : Google Scholar | |
Montaño LM, Flores-Soto E, Reyes-Garcia J, Diaz Hernández V, Carbajal-Garcia A, Campuzáno González E, Ramirez-Salinas GL, Velasco-Velázquez M and Sommer B: Testosterone induces hyporesponsiveness by interfering with IP3 receptors in guinea pig airway smooth muscle. Mol Cell Endocrinol. 473:17–30. 2018. View Article : Google Scholar | |
Cheng H, Lederer WJ and Cannell MB: Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle. Science. 262:740–744. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fabiato A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 245:C1–C14. 1983. View Article : Google Scholar : PubMed/NCBI | |
ZhuGe R, Sims SM, Tuft RA, Fogarty KE and Walsh JV Jr: Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guineapig tracheal myocytes. J Physiol. 513:711–718. 1998. View Article : Google Scholar | |
Collier ML, Ji G, Wang Y and Kotlikoff MI: Calcium-induced calcium release in smooth muscle: Loose coupling between the action potential and calcium release. J Gen Physiol. 115:653–662. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu QH, Zheng YM and Wang YX: Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch. 453:531–541. 2007. View Article : Google Scholar | |
Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH and Sham JS: ET-1 activates Ca2+ sparks in PASMC: Local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol. 285:L680–L690. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jude JA, Solway J, Panettieri RA Jr, Walseth TF and Kannan MS: Differential induction of CD38 expression by TNF-α in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 299:L879–L890. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hotta K, Emala CW and Hirshman CA: TNF-α upregulates Giα and Gqα protein expression and function in human airway smooth muscle cells. Am J Physiol. 276:L405–L411. 1999.PubMed/NCBI |