1
|
Brookmeyer R, Johnson E, Ziegler-Graham K
and Arrighi HM: Forecasting the global burden of Alzheimer’s
disease. Alzheimers Dement. 3:186–191. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Moran M, Lynch CA, Walsh C, Coen R,
Coakley D and Lawlor BA: Sleep disturbance in mild to moderate
Alzheimer’s disease. Sleep Med. 6:347–352. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kondratova AA and Kondratov RV: The
circadian clock and pathology of the ageing brain. Nat Rev
Neurosci. 13:325–335. 2012. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Ooms S, Overeem S, Besse K, Rikkert MO,
Verbeek M and Claassen JA: Effect of 1 night of total sleep
deprivation on cerebrospinal fluid β-amyloid 42 in healthy
middle-aged men: A randomized clinical trial. JAMA Neurol.
71:971–977. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Peter-Derex L, Magnin M and Bastuji H:
Heterogeneity of arousals in human sleep: A
stereo-electroencephalographic study. Neuroimage. 123:229–244.
2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mander BA, Winer JR, Jagust WJ and Walker
MP: Sleep: A novel mechanistic pathway, biomarker, and treatment
target in the pathology of Alzheimer’s disease? Trends Neurosci.
39:552–566. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hyman BT: New neuropathological criteria
for Alzheimer disease. Arch Neurol. 55:1174–1176. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tanaka T, Mayuyama D and Takeda M:
Alzheimer disease and tau protein. Rinsho Shinkeigaku.
52:1171–1173. 2012.In Japanese. View Article : Google Scholar
|
9
|
Campbell SS and Murphy PJ: Delayed sleep
phase disorder in temporal isolation. Sleep. 30:1225–1228. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth
LP, Cirrito JR, Fujiki N, Nishino S and Holtzman DM: Amyloid-beta
dynamics are regulated by orexin and the sleep-wake cycle. Science.
326:1005–1007. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Morishima-Kawashima M and Ihara Y:
Alzheimer’s disease: Beta-amyloid protein and tau. J Neurosci Res.
70:392–401. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vyazovskiy VV, Olcese U, Lazimy YM,
Faraguna U, Esser SK, Williams JC, Cirelli C and Tononi G: Cortical
firing and sleep homeostasis. Neuron. 63:865–878. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
de Lecea L, Kilduff TS, Peyron C, Gao X,
Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT,
Bartlett FS II, et al: The hypocretins: Hypothalamus-specific
peptides with neuroexcitatory activity. Proc Natl Acad Sci USA.
95:322–327. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sakurai T, Amemiya A, Ishii M, Matsuzaki
I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP,
Wilson S, et al: Orexins and orexin receptors: A family of
hypothalamic neuropeptides and G protein-coupled receptors that
regulate feeding behavior. Cell. 92:573–585. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liguori C: Orexin And Alzheimer’s disease.
Curr Top Behav Neurosci. 33:305–322. 2017. View Article : Google Scholar
|
16
|
Thakkar MM, Winston S and McCarley RW:
Orexin neurons of the hypothalamus express adenosine A1 receptors.
Brain Res. 944:190–194. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thakkar MM, Engemann SC, Walsh KM and
Sahota PK: Adenosine and the homeostatic control of sleep: Effects
of A1 receptor blockade in the perifornical lateral hypothalamus on
sleep-wakefulness. Neuroscience. 153:875–880. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Alam MN, Kumar S, Rai S, Methippara M,
Szymusiak R and McGinty D: Role of adenosine A1 receptor
in the perifornical-lateral hypothalamic area in sleep-wake
regulation in rats. Brain Res. 1304:96–104. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cedernaes J, Osorio RS, Varga AW, Kam K,
Schiöth HB and Benedict C: Candidate mechanisms underlying the
association between sleep-wake disruptions and Alzheimer’s disease.
Sleep Med Rev. 31:102–111. 2017. View Article : Google Scholar
|
20
|
Gu L, Wu D, Tang X, Qi X, Li X, Bai F,
Chen X, Ren Q and Zhang Z: Myelin changes at the early stage of
5XFAD mice. Brain Res Bull. 137:285–293. 2018. View Article : Google Scholar
|
21
|
Aytan N, Choi JK, Carreras I, Crabtree L,
Nguyen B, Lehar M, Blusztajn JK, Jenkins BG and Dedeoglu A:
Protective effects of 7,8-dihydroxyflavone on neuropathological and
neurochemical changes in a mouse model of Alzheimer’s disease. Eur
J Pharmacol. 828:9–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maiti P, Paladugu L and Dunbar GL: Solid
lipid curcumin particles provide greater anti-amyloid,
anti-inflammatory and neuroprotective effects than curcumin in the
5xFAD mouse model of Alzheimer’s disease. BMC Neurosci. 19:72018.
View Article : Google Scholar
|
23
|
Shao J, Lin M, Li Y, Li X, Liu J, Liang J
and Yao H: In vivo blood glucose quantification using Raman
spectroscopy. PLoS One. 7:e481272012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Harkany T, Abrahám I, Kónya C, Nyakas C,
Zarándi M, Penke B and Luiten PG: Mechanisms of beta-amyloid
neurotoxicity: Perspectives of pharmacotherapy. Rev Neurosci.
11:329–382. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods.
25:402–408. 2001. View Article : Google Scholar
|
26
|
Kantarci K: Molecular imaging of Alzheimer
disease pathology. AJNR Am J Neuroradiol. 35(Suppl 6): S12–S17.
2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo K, Yin G, Zi XH, Zhu HX and Pan Q:
Effect of selective serotonin reuptake inhibitors on expression of
5-HT1AR and neurotransmitters in rats with vascular dementia. Genet
Mol Res. 15: View Article : Google Scholar : 2016.PubMed/NCBI
|
28
|
Liu ZJ, Li ZH, Liu L, Tang WX, Wang Y,
Dong MR and Xiao C: Curcumin attenuates beta-amyloid-induced
neuroinlammation via activation of peroxisome
proliferator-activated receptor-gamma function in a rat model of
Alzheimer’s disease. Front Pharmacol. 7:2612016. View Article : Google Scholar
|
29
|
Helal M, Hingant E, Pujo-Menjouet L and
Webb GF: Alzheimer’s disease: Analysis of a mathematical model
incorporating the role of prions. J Math Biol. 69:1207–1235. 2014.
View Article : Google Scholar
|
30
|
McCurry SM, Logsdon RG, Vitiello MV and
Teri L: Treatment of sleep and nighttime disturbances in
Alzheimer’s disease: A behavior management approach. Sleep Med.
5:373–377. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vitiello MV and Prinz PN: Alzheimer’s
disease. Sleep and sleep/wake patterns. Clin Geriatr Med.
5:289–299. 1989. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rosenwasser AM: Functional neuroanatomy of
sleep and circadian rhythms. Brain Res Rev. 61:281–306. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Arriagada PV, Growdon JH, Hedley-Whyte ET
and Hyman BT: Neurofibrillary tangles but not senile plaques
parallel duration and severity of Alzheimer’s disease. Neurology.
42:631–639. 1992. View Article : Google Scholar : PubMed/NCBI
|
34
|
Braak H and Braak E: Neuropathological
stageing of Alzheimer- related changes. Acta Neuropathol.
82:239–259. 1991. View Article : Google Scholar
|
35
|
Saper CB, Scammell TE and Lu J:
Hypothalamic regulation of sleep and circadian rhythms. Nature.
437:1257–1263. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Arrigoni E, Mochizuki T and Scammell TE:
Activation of the basal forebrain by the orexin/hypocretin
neurones. Acta Physiol. 198:223–235. 2010. View Article : Google Scholar
|
37
|
Lee MG, Hassani OK and Jones BE: Discharge
of identified orexin/hypocretin neurons across the sleep-waking
cycle. J Neurosci. 25:6716–6720. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Di Meco A, Lauretti E, Vagnozzi AN and
Praticò D: Zileuton restores memory impairments and reverses
amyloid and tau pathology in aged Alzheimer’s disease mice.
Neurobiol Aging. 35:2458–2464. 2014. View Article : Google Scholar : PubMed/NCBI
|