Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review)
- Authors:
- Marzena Wyganowska‑Świątkowska
- Mateusz Tarnowski
- Daniel Murtagh
- Ewa Skrzypczak‑Jankun
- Jerzy Jankun
-
Affiliations: Department of Dental Surgery and Periodontology, Poznań University of Medical Sciences, 60‑820 Poznań, Poland, Dagmed Medical Center, 60‑681 Poznań, Poland, Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA - Published online on: November 7, 2018 https://doi.org/10.3892/ijmm.2018.3983
- Pages: 15-25
-
Copyright: © Wyganowska‑Świątkowska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rosso T, Bertuccio P, La Vecchia C, Negri E and Malvezzi M: Cancer mortality trend analysis in Italy, 1980–2010 and predictions for 2015. Tumori. 101:664–675. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jankun J, Merrick HW and Goldblatt PJ: Expression and localization of elements of the plasminogen activation system in benign breast disease and breast cancers. J Cell Biochem. 53:135–144. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kiziridou AD, Toliou T, Stefanou D and Agnantis N: u-PA expression in benign, borderline and malignant ovarian tumors. Anticancer Res. 22:985–990. 2002.PubMed/NCBI | |
Safavi F and Rostami A: Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol. 93:428–433. 2012. View Article : Google Scholar : PubMed/NCBI | |
Van Hove I, Lemmens K, Van de Velde S, Verslegers M and Moons L: Matrix metalloproteinase-3 in the central nervous system: A look on the bright side. J Neurochem. 123:203–216. 2012. View Article : Google Scholar : PubMed/NCBI | |
van der Vorst EP, Keijbeck AA, de Winther MP and Donners MM: A disintegrin and metalloproteases: Molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis. 224:302–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Chen H, Bartee MY, Williams J, Davids JA, Huang E, Moreb J and Lucas A: Virus-derived anti-inflammatory proteins: Potential therapeutics for cancer. Trends Mol Med. 18:304–310. 2012. View Article : Google Scholar : PubMed/NCBI | |
Avgeris M, Mavridis K and Scorilas A: Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance. Biol Chem. 393:301–317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Frank A, David V, Aurelie TR, Florent G, William H and Philippe B: Regulation of MMPs during melanoma progression: From genetic to epigenetic. Anticancer Agents Med Chem. 12:773–782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pulz LH and Strefezzi RF: Proteases as prognostic markers in human and canine cancers. Vet Comp Oncol. 15:669–683. 2017. View Article : Google Scholar | |
Liu WL, Liu D, Cheng K, Liu YJ, Xing S, Chi PD, Liu XH, Xue N, Lai YZ, Guo L and Zhang G: Evaluating the diagnostic and prognostic value of circulating cathepsin S in gastric cancer. Oncotarget. 7:28124–28138. 2016.PubMed/NCBI | |
Pišlar A, Perišić Nanut M and Kos J: Lysosomal cysteine peptidases-Molecules signaling tumor cell death and survival. Semin Cancer Biol. 35:168–179. 2015. View Article : Google Scholar | |
Wallin H, Abrahamson M and Ekstrom U: Cystatin C properties crucial for uptake and inhibition of intracellular target enzymes. J Biol Chem. 288:17019–17029. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R and Sadroddiny E: Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 86:221–231. 2017. View Article : Google Scholar | |
Hahlbrock A, Goesswein D, Kunzel J, Wünsch D and Stauber RH: Threonine Aspartase1: An unexplored protease with relevance for oral oncology? Oral Oncol. 54:e10–e12. 2016. View Article : Google Scholar : PubMed/NCBI | |
Werner AB, Tait SW, de Vries E, Eldering E and Borst J: Requirement for aspartate-cleaved bid in apoptosis signaling by DNA-damaging anti-cancer regimens. J Biol Chem. 279:28771–28780. 2004. View Article : Google Scholar : PubMed/NCBI | |
Verollet C, Charrière GM, Labrousse A, Cougoule C, Le Cabec V and Maridonneau-Parini I: Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. Eur J Immunol. 41:2805–2813. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roycik MD, Fang X and Sang QX: A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates. Curr Pharm Des. 15:1295–1308. 2009. View Article : Google Scholar : PubMed/NCBI | |
Christiaens V and Lijnen HR: Role of the fibrinolytic and matrix metalloproteinase systems in development of adipose tissue. Arch Physiol Biochem. 112:254–259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, et al: Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer. 92:2171–2180. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, Caputi M, Carriero MV, Iaccarino I and Stoppelli MP: The urokinase plasminogen activator and its receptor: Role in cell growth and apoptosis. Thromb Haemost. 93:205–211. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carriero MV and Stoppelli MP: The urokinase-type plasminogen activator and the generation of inhibitors of urokinase activity and signaling. Curr Pharm Des. 17:1944–1961. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Teng Z, Chen J, Li Y, Chen Z, Li Z and Zhang Z: Matrix metalloproteinase 9 expression and survival of patients with osteosarcoma: A meta-analysis. Eur J Cancer Care (Engl). 26:e123642017. View Article : Google Scholar | |
Hadler-Olsen E, Winberg JO and Uhlin-Hansen L: Matrix metal-loproteinases in cancer: Their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI | |
Woodward JK, Holen I, Coleman RE and Buttle DJ: The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone. 41:912–927. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swiercz R, Keck RW, Skrzypczak-Jankun E, Selman SH and Jankun J: Recombinant PAI-1 inhibits angiogenesis and reduces size of LNCaP prostate cancer xenografts in SCID mice. Oncol Rep. 8:463–470. 2001.PubMed/NCBI | |
Rabbani SA and Xing RH: Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol. 12:911–920. 1998.PubMed/NCBI | |
Gupta S, Gupta A, Saini AK, Majumder K, Sinha K and Chahal A: Prostate cancer: How young is too young. Curr Urol. 9:212–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Johnston TJ, Shaw GL, Lamb AD, Parashar D, Greenberg D, Xiong T, Edwards AL, Gnanapragasam V, Holding P, Herbert P, et al: Mortality among men with advanced prostate cancer excluded from the protect trial. Eur Urol. 71:381–388. 2017. View Article : Google Scholar : | |
Litwin MS and Tan HJ: The diagnosis and treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L and Goncalves F: Bone metastases: An overview. Oncol Rev. 11:3212017. View Article : Google Scholar : PubMed/NCBI | |
Hildenbrand R, Allgayer H, Marx A and Stroebel P: Modulators of the urokinase-type plasminogen activation system for cancer. Exp Opin Investig Drugs. 19:641–652. 2010. View Article : Google Scholar | |
Honkavuori M, Talvensaari-Mattila A, Puistola U, Turpeenniemi-Hujanen T and Santala M: High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Res. 28:2715–2719. 2008.PubMed/NCBI | |
Isogai C, Laug WE, Shimada H, Declerck PJ, Stins MF, Durden DL, Erdreich-Epstein A and DeClerck YA: Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 61:5587–5594. 2001.PubMed/NCBI | |
Jankun J and Skrzypczak-Jankun E: Yin and yang of the plasminogen activator inhibitor. Pol Arch Med Wewn. 119:410–417. 2009.PubMed/NCBI | |
Kodaman N, Aldrich MC, Sobota R, Asselbergs FW, Brown NJ, Moore JH and Williams SM: Plasminogen activator inhibitor-1 and diagnosis of the metabolic syndrome in a west african population. J Am Heart Assoc. 5:e0038672016. View Article : Google Scholar : PubMed/NCBI | |
Forsgren M, Råden B, Israelsson M, Larsson K and Hedén LO: Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett. 213:254–260. 1987. View Article : Google Scholar : PubMed/NCBI | |
Miyata T, Iwanaga S, Sakata Y and Aoki N: Plasminogen Tochigi: Inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci USA. 79:6132–6136. 1982. View Article : Google Scholar : PubMed/NCBI | |
Borisov OV, Field M, Ling VT and Harris RJ: Characterization of oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem. 81:9744–9754. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hatton MW, Day S, Ross B, Southward SM, DeReske M and Richardson M: Plasminogen II accumulates five times faster than plasminogen I at the site of a balloon de-endothelializing injury in vivo to the rabbit aorta: Comparison with other hemostatic proteins. J Lab Clin Med. 134:260–266. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mølgaard L, Ponting CP and Christensen U: Glycosylation at Asn-289 facilitates the ligand-induced conformational changes of human Glu-plasminogen. FEBS Lett. 405:363–368. 1997. View Article : Google Scholar : PubMed/NCBI | |
Abdul S, Leebeek FW, Rijken DC and Uitte de Willige S: Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood. 127:538–545. 2016. View Article : Google Scholar | |
Stefansson S, Lawrence DA and Argraves WS: Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1–2. J Biol Chem. 271:8215–8220. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ainsworth S, Carter S, Fisher C, Dawson J, Makrides L, Nuttall T and Mason SL: Ligneous membranitis in Scottish Terriers is associated with a single nucleotide polymorphism in the plasminogen (PLG) gene. Anim Genet. 46:707–710. 2015. View Article : Google Scholar : PubMed/NCBI | |
Silva GB, Bariani C, Mendonça EF and Batista AC: Clinical manifestations due to severe plasminogen deficiency: A case report. J Dent Child(Chic). 73:179–182. 2006. | |
Celkan T: Plasminogen deficiency. J Thromb Thrombolysis. 43:132–138. 2017. View Article : Google Scholar | |
Sivolella S, De Biagi M, Sartori MT, Berengo M and Bressan E: Destructive membranous periodontal disease (ligneous gingivitis): A literature review. J Periodontol. 83:465–476. 2012. View Article : Google Scholar | |
Lotan TL, Tefs K, Schuster V, Miller J, Manaligod J, Filstead A, Yamada SD and Krausz T: Inherited plasminogen deficiency presenting as ligneous vaginitis: A case report with molecular correlation and review of the literature. Hum Pathol. 38:1569–1575. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gunhan O, Günhan M, Berker E, Gürgan CA and Yildirim H: Destructive membranous periodontal disease (Ligneous peri-odontitis). J Periodontol. 70:919–925. 1999. View Article : Google Scholar | |
Cohen SR: Ligneous conjunctivitis: An ophthalmic disease with potentially fatal tracheobronchial obstruction. Laryngeal and tracheobronchial features. Ann Otol Rhinol Laryngol. 99:509–512. 1990. View Article : Google Scholar : PubMed/NCBI | |
Foley JH, Kim PY, Mutch NJ and Gils A: Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost. 11(Suppl 1): S306–S315. 2013. View Article : Google Scholar | |
Kolev K, Longstaff C and Machovich R: Fibrinolysis at the fluid-solid interface of thrombi. Curr Med Chem Cardiovasc Hematol Agents. 3:341–355. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bode W and Renatus M: Tissue-type plasminogen activator: Variants and crystal/solution structures demarcate structural determinants of function. Curr Opin Struct Biol. 7:865–872. 1997. View Article : Google Scholar | |
Marcos-Contreras OA, Martinez de Lizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J, et al: Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood. 128:2423–2434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, Mitra S, Ghasabyan A, Chin TL, Sauaia A, et al: Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 80:16–23; discussion 23–15, 2016. PubMed/NCBI | |
Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA and Wade CE: Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 41:514–521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Genét GF, Ostrowski SR, Sørensen AM and Johansson PI: Detection of tPA-induced hyperfibrinolysis in whole blood by RapidTEG, KaolinTEG, and functional fibrinogenTEG in healthy individuals. Clin Appl Thromb Hemost. 18:638–644. 2012. View Article : Google Scholar : PubMed/NCBI | |
Prabhudesai A, Shetty S, Ghosh K and Kulkarni B: Dysfunctional fibrinolysis and cerebral venous thrombosis. Blood Cells Mol Dis. 65:51–55. 2017. View Article : Google Scholar : PubMed/NCBI | |
Talens S, Malfliet JJ, Rudež G, Spronk HM, Janssen NA, Meijer P, Kluft C, de Maat MP and Rijken DC: Biological variation in tPA-induced plasma clot lysis time. Thromb Haemost. 108:640–646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li J and Liu Q: Association between platelet activation and fibrinolysis in acute stroke patients. Neurosci Lett. 384:305–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
Simone TM and Higgins PJ: Low molecular weight antagonists of plasminogen activator inhibitor-1: Therapeutic potential in cardiovascular disease. Mol Med Ther. 1:1012012. View Article : Google Scholar | |
Higazi AA, Upson RH, Cohen RL, Manuppello J, Bognacki J, Henkin J, McCrae KR, Kounnas MZ, Strickland DK, Preissner KT, et al: Interaction of single-chain urokinase with its receptor induces the appearance and disappearance of binding epitopes within the resultant complex for other cell surface proteins. Blood. 88:542–551. 1996.PubMed/NCBI | |
Finckh U, van Hadeln K, Müller-Thomsen T, Alberici A, Binetti G, Hock C, Nitsch RM, Stoppe G, Reiss J and Gal A: Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics. 4:213–217. 2003. View Article : Google Scholar : PubMed/NCBI | |
Goto Y, Hagikura S, Katsuda N and Hamajima N: A C to T polymorphism of urokinase plasminogen activator (P141L) is associated with Helicobacter pylori infection. Asian Pac J Cancer Prev. 12:803–806. 2011.PubMed/NCBI | |
Kriegbaum MC, Persson M, Haldager L, Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjær A and Ploug M: Rational targeting of the urokinase receptor (uPAR): Development of antagonists and non-invasive imaging probes. Curr Drug Targets. 12:1711–1728. 2011. View Article : Google Scholar : PubMed/NCBI | |
Romer J, Nielsen BS and Ploug M: The urokinase receptor as a potential target in cancer therapy. Curr Pharm Des. 10:2359–2376. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ploug M, Gardsvoll H, Jorgensen TJ, Lønborg Hansen L and Dano K: Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: A potential target for anti-invasive cancer therapy. Biochem Soc Trans. 30:177–183. 2002. View Article : Google Scholar : PubMed/NCBI | |
Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, Bonino C, Riccieri V, Bazzichi L, Liakouli V, et al: A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum. 63:247–256. 2011. View Article : Google Scholar | |
Shih CM, Kuo WH, Lin CW, Chen W, Cheng WE, Chen SC and Lee YL: Association of polymorphisms in the genes of the urokinase plasminogen activation system with susceptibility to and severity of non-small cell lung cancer. Clin Chim Acta. 412:194–198. 2011. View Article : Google Scholar | |
Flevaris P and Vaughan D: The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost. 43:169–177. 2017. View Article : Google Scholar | |
Jankun J, Yang J, Zheng H, Han FQ, Al-Senaidy A and Skrzypczak-Jankun E: Remarkable extension of PAI-1 half-life surprisingly brings no changes to its structure. Int J Mol Med. 29:61–64. 2012. | |
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A and Mirzaei H: Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem. 119:17–27. 2018. View Article : Google Scholar | |
Piao L, Jung I, Huh JY, Miyata T and Ha H: A novel plasminogen activator inhibitor-1 inhibitor, TM5441, protects against high-fat diet-induced obesity and adipocyte injury in mice. Br J Pharmacol. 173:2622–2632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Srikanthan K, Feyh A, Visweshwar H, Shapiro JI and Sodhi K: Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west virginian population. Int J Med Sci. 13:25–38. 2016. View Article : Google Scholar : PubMed/NCBI | |
Magdoud K, Herbepin VG, Touraine R, Almawi WY and Mahjoub T: Plasminogen activator inhibitor 1 4G/5G and -844G/A variants in idiopathic recurrent pregnancy loss. Am J Reprod Immunol. 70:246–252. 2013. View Article : Google Scholar : PubMed/NCBI | |
Honig A, Engel JB, Segerer SE, Kranke P, Häusler S and Wurfel W: Pregnancy-triggered antiphospholipid syndrome in a patient with multiple late miscarriages. Hum Reprod. 25:2753–2754. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jankun J and Skrzypczak-Jankun E: Bleeding diathesis is associated with an A15T heterozygous mutation in exon 2 of the plasminogen activator inhibitor type 1. Exp Ther Med. 1:575–577. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mehta R and Shapiro AD: Plasminogen activator inhibitor type 1 deficiency. Haemophilia. 14:1255–1260. 2008. View Article : Google Scholar | |
Schleef RR, Higgins DL, Pillemer E and Levitt LJ: Bleeding diathesis due to decreased functional activity of type 1 plasminogen activator inhibitor. J Clin Invest. 83:1747–1752. 1989. View Article : Google Scholar : PubMed/NCBI | |
Heiman M, Gupta S and Shapiro AD: The obstetric, gynaecological and fertility implications of homozygous PAI-1 deficiency: Single-centre experience. Haemophilia. 20:407–412. 2014. View Article : Google Scholar | |
Lin S, Huiya Z, Bo L, Wei W and Yongmei G: The plasminogen activator inhibitor-1 (PAI-1) gene -844 A/G and -675 4G/5G promoter polymorphism significantly influences plasma PAI-1 levels in women with polycystic ovary syndrome. Endocrine. 36:503–509. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fay WP, Parker AC, Condrey LR and Shapiro AD: Human plasminogen activator inhibitor-1 (PAI-1) deficiency: Characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 90:204–208. 1997.PubMed/NCBI | |
Jankun J and Skrzypczak-Jankun E: Val17Ile single nucleotide polymorphisms similarly as Ala15Thr could be related to the lower secretory dynamics of PAI-1 secretion: Theoretical evidence. Curr Mol Med. 11:512–516. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miao C, Liang C, Zhu J, Xu A, Zhao K, Hua Y, Zhang J, Chen W, Suo C, Zhang C, et al: Prognostic role of matrix metal-loproteinases in bladder carcinoma: A systematic review and meta-analysis. Oncotarget. 8:32309–32321. 2017.PubMed/NCBI | |
Turunen SP, Tatti-Bugaeva O and Lehti K: Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys Acta. 1864.1974–1988. 2017. | |
Van Lint P and Libert C: Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leuk Biol. 82:1375–1381. 2007. View Article : Google Scholar | |
Verma RP and Hansch C: Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg Med Chem. 15:2223–2268. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swarnakar S, Paul S, Singh LP and Reiter RJ: Matrix metal-loproteinases in health and disease: Regulation by melatonin. J Pineal Res. 50:8–20. 2011. View Article : Google Scholar | |
Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R and Kizek R: Matrix metalloproteinases. Curr Med Chem. 17:3751–3768. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fisher KE, Fei Q, Laird ER, Stock JL, Allen MR, Sahagan BG and Strick CA: Engineering autoactivating forms of matrix metalloproteinase-9 and expression of the active enzyme in cultured cells and transgenic mouse brain. Biochemistry. 41:8289–8297. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI and Strongin AY: Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J. 356:705–718. 2001. View Article : Google Scholar : PubMed/NCBI | |
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS and Ali AN: Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis. 38:766–780. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G and Tryggvason K: Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science. 284:1667–1670. 1999. View Article : Google Scholar : PubMed/NCBI | |
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ and Yang SF: Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Research. 62:2017. View Article : Google Scholar | |
Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC, et al: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 17:4342017. View Article : Google Scholar : PubMed/NCBI | |
Eiro N, Fernandez-Gomez J, Sacristan R, Sacristán R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, Quintas A, Escaf S and Vizoso FJ: Stromal factors involved in human prostate cancer development, progression and castration resistance. J Cancer Res Clin Oncol. 143:351–359. 2017. View Article : Google Scholar | |
Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar | |
Grieu F, Li WQ and Iacopetta B: Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype. Breast Cancer Res Treat. 88:197–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Srivastava P, Srivastava A and Mittal RD: Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol Dial Transplant. 25:3393–3401. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghaffarpour S, Ghazanfari T, Kabudanian Ardestani S, Pourfarzam S, Fallahi F, Shams J, Mirsharif ES, Mohseni Majd AM and Faghihzadeh S: Correlation between MMP-9 and MMP-9/ TIMPs complex with pulmonary function in sulfur mustard exposed civilians: Sardasht-Iran cohort study. Arch Iran Med. 20:74–82. 2017.PubMed/NCBI | |
Ricci S, Bruzzese D and DI Carlo A: Evaluation of MMP-2, MMP-9, TIMP-1, TIMP-2, NGAL and MMP-9/NGAL complex in urine and sera from patients with bladder cancer. Oncol Lett. 10:2527–2532. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hinterseher I, Krex D, Kuhlisch E, Schmidt KG, Pilarsky C, Schneiders W, Saeger HD and Bergert H: Tissue inhibitor of metalloproteinase-1 (TIMP-1) polymorphisms in a Caucasian population with abdominal aortic aneurysm. World J Surg. 31:2248–2254. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo Xu P, Jin W, Wang T, Fan J, Hao D, Jing Z, Han S, Du C, Jiang JD, et al: TIMP-2 SNPs rs7342880 and rs4789936 are linked to risk of knee osteoarthritis in the Chinese Han Population. Oncotarget. 8:1166–1176. 2017. | |
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A and Delbono O: Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 307:C25–C38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lah TT, Durán Alonso MB and Van Noorden CJ: Antiprotease therapy in cancer: Hot or not. Exp Opin Biol Ther. 6:257–279. 2006. View Article : Google Scholar | |
Wong MS, Sidik SM, Mahmud R and Stanslas J: Molecular targets in the discovery and development of novel antimetastatic agents: Current progress and future prospects. Clin Exp Pharmacol Physiol. 40:307–319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jankun J, Maher VM and McCormick JJ: Malignant transformation of human fibroblasts correlates with increased activity of receptor-bound plasminogen activator. Cancer Res. 51:1221–1226. 1991.PubMed/NCBI | |
Jankun J, Selman SH, Aniola J and Skrzypczak-Jankun E: Nutraceutical inhibitors of urokinase: Potential applications in prostate cancer prevention and treatment. Oncol Rep. 16:341–346. 2006.PubMed/NCBI | |
Kamat AM and Lamm DL: Chemoprevention of bladder cancer. Urol Clin North Am. 29:157–168. 2002. View Article : Google Scholar : PubMed/NCBI | |
Swiercz R, Skrzypczak-Jankun E, Merrell MM, Selman SH and Jankun J: Angiostatic activity of synthetic inhibitors of urokinase type plasminogen activator. Oncol Rep. 6:523–526. 1999.PubMed/NCBI | |
Jankun J, Selman SH, Swiercz R and Skrzypczak-Jankun E: Why drinking green tea could prevent cancer. Nature. 387:5611997. View Article : Google Scholar : PubMed/NCBI | |
Kemberling JK, Hampton JA, Keck RW, Gomez MA and Selman SH: Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol. 170:773–776. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jankun J, Keck RW and Selman SH: Epigallocatechin-3-gallate prevents tumor cell implantation/growth in an experimental rat bladder tumor model. Int J Oncol. 44:147–152. 2014. View Article : Google Scholar | |
Wendt MD, Geyer A, McClellan WJ, Rockway TW, Weitzberg M, Zhao X, Mantei R, Stewart K, Nienaber V, Klinghofer V and Giranda VL: Interaction with the S1 beta-pocket of urokinase: 8-heterocycle substituted and 6,8-disubstituted 2-naphthamidine urokinase inhibitors. Bioorg Med Chem Lett. 14:3063–3068. 2004.PubMed/NCBI | |
Bruncko M, McClellan WJ, Wendt MD, Sauer DR, Geyer A, Dalton CR, Kaminski MA, Weitzberg M, Gong J, Dellaria JF, et al: Naphthamidine urokinase plasminogen activator inhibitors with improved pharmacokinetic properties. Bioorg Med Chem Lett. 15:93–98. 2005. View Article : Google Scholar | |
Katz BA, Sprengeler PA, Luong C, Verner E, Elrod K, Kirtley M, Janc J, Spencer JR, Breitenbucher JG, Hui H, et al: Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. Chem Biol. 8:1107–1121. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ and Thomssen C: Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Exp Rev Mol Diagn. 11:617–634. 2011. View Article : Google Scholar | |
Zengel P, Ramp D, Mack B, Zahler S, Berghaus A, Muehlenweg B, Gires O and Schmitz S: Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis. BMC Cancer. 10:922010. View Article : Google Scholar : PubMed/NCBI | |
Setyono-Han B, Stürzebecher J, Schmalix WA, Muehlenweg B, Sieuwerts AM, Timmermans M, Magdolen V, Schmitt M, Klijn JG and Foekens JA: Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost. 93:779–786. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ertongur S, Lang S, Mack B, Wosikowski K, Muehlenweg B and Gires O: Inhibition of the invasion capacity of carcinoma cells by WX-UK1, a novel synthetic inhibitor of the urokinase-type plasminogen activator system. Int J Cancer. 110:815–824. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ossowski L: Invasion of connective tissue by human carcinoma cell lines: Requirement for urokinase, urokinase receptor, and interstitial collagenase. Cancer Res. 52:6754–6760. 1992.PubMed/NCBI | |
Ossowski L: In vivo invasion of modified chorioallantoic membrane by tumor cells: The role of cell surface-bound urokinase. J Cell Biol. 107:2437–2445. 1988. View Article : Google Scholar : PubMed/NCBI | |
Jankun J, Keck RW, Skrzypczak-Jankun E and Swiercz R: Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res. 57:559–563. 1997.PubMed/NCBI | |
Berkenpas MB, Lawrence DA and Ginsburg D: Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 14:2969–2977. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, Wojtowicz A, Selman SH and Jankun J: A novel form of the plasminogen activator inhibitor created by cysteine mutations extends its half-life: Relevance to cancer and angiogenesis. Mol Cancer Ther. 2:19–28. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tucker HM, Mottonen J, Goldsmith EJ and Gerard RD: Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition. Nat Struct Biol. 2:442–445. 1995. View Article : Google Scholar : PubMed/NCBI | |
Binder BR and Mihaly J: The plasminogen activator inhibitor ‘paradox’ in cancer. Immunol Lett. 118:116–124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG and Church FC: Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays. 29:1029–1038. 2007. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ: Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: From pilot to level 1 evidence studies. Clin Chem. 48:1194–1197. 2002.PubMed/NCBI | |
Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E, Selman SH and Jankun J: Plasminogen activator inhibitor type-1 mutants regulate angiogenesis of human umbilical and lung vascular endothelial cells. Oncol Rep. 12:1155–1162. 2004.PubMed/NCBI | |
Masset A, Maillard C, Sounni NE, Jacobs N, Bruyére F, Delvenne P, Tacke M, Reinheckel T, Foidart JM, Coussens LM and Noël A: Unimpeded skin carcinogenesis in K14–HPV16 transgenic mice deficient for plasminogen activator inhibitor. Int J Cancer. 128:283–293. 2011. View Article : Google Scholar | |
Mazar AP, Henkin J and Goldfarb RH: The urokinase plasminogen activator system in cancer: Implications for tumor angiogenesis and metastasis. Angiogenesis. 3:15–32. 1999. View Article : Google Scholar | |
Wyganowska-Świątkowska M and Jankun J: Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol. 47:16–24. 2015. View Article : Google Scholar | |
Chen SC, Henry DO, Hicks DG, Reczek PR and Wong MK: Intravesical administration of plasminogen activator inhibitor type-1 inhibits in vivo bladder tumor invasion and progression. J Urol. 181:336–342. 2009. View Article : Google Scholar | |
Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T and Oku N: (-)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett. 210:47–55. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stefansson S, Petitclerc E, Wong MK, McMahon GA, Brooks PC and Lawrence DA: Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. J Biol Chem. 276:8135–8141. 2001. View Article : Google Scholar | |
Su SC, Lin CW, Yang WE, Fan WL and Yang SF: The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Exp Opin Ther Targets. 20:551–566. 2016. View Article : Google Scholar | |
Ulisse S, Baldini E, Sorrenti S and D’Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto J, Mizokami Y, Takahashi K, Nakajima K, Ohtsubo T, Miura S, Narasaka T, Takeyama H, Omata T, Shimokobe K, et al: Expressions of urokinase-type plasminogen activator, its receptor and plasminogen activator inhibitor-1 in gastric cancer cells and effects of Helicobacter pylori. Scand J Gastroenterol. 40:783–793. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haj-Yehia A, Nassar T, Sachais BS, Kuo A, Bdeir K, Al-Mehdi AB, Mazar A, Cines DB and Higazi AA: Urokinase-derived peptides regulate vascular smooth muscle contraction in vitro and in vivo. FASEB J. 14:1411–1422. 2000. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP and Rabbani SA: A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. FASEB J. 14:1400–1410. 2000. View Article : Google Scholar : PubMed/NCBI | |
Berkenblit A, Matulonis UA, Kroener JF, Dezube BJ, Lam GN, Cuasay LC, Brünner N, Jones TR, Silverman MH and Gold MA: A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: A phase I trial. Gynecol Oncol. 99:50–57. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, et al: Small-molecule inhibition of the uPAR.uPA interaction: Synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem. 21:2145–2155. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Eric Knabe W, Li L, Jo I, Mani T, Roehm H, Oh K, Li J, Khanna M and Meroueh SO: Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorg Med Chem. 20:4760–4773. 2012. View Article : Google Scholar : | |
Jian Q, Yang Z, Shu J, Liu X, Zhang J and Li Z: Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma. J Cell Mol Med. 22:315–329. 2018. View Article : Google Scholar | |
Li H and Chen C: Quercetin has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr Cancer Ther. 17:511–523. 2018. View Article : Google Scholar | |
Cathcart J, Pulkoski-Gross A and Cao J: Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2:26–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rothenberg ML, Nelson AR and Hande KR: New drugs on the horizon: Matrix metalloproteinase inhibitors. Oncologist. 3:271–274. 1998. | |
Rothenberg ML, Nelson AR and Hande KR: New drugs on the horizon: Matrix metalloproteinase inhibitors. Stem cells. 17:237–240. 1999. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM, Fingleton B and Matrisian LM: Matrix metal-loproteinase inhibitors and cancer: Trials and tribulations. Science. 295:2387–2392. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martens E, Leyssen A, Van Aelst I, Fiten P, Piccard H, Hu J, Descamps FJ, Van den Steen PE, Proost P, Van Damme J, et al: A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta. 1770:178–186. 2007. View Article : Google Scholar | |
Kaimal R, Aljumaily R, Tressel SL, Pradhan RV, Covic L, Kuliopulos A, Zarwan C, Kim YB, Sharifi S and Agarwal A: Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 73:2457–2467. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shay G, Lynch CC and Fingleton B: Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 44–46:200–206. 2015. View Article : Google Scholar |