1
|
Cho HC and Marbán E: Biological therapies
for cardiac arrhythmias: Can genes and cells replace drugs and
devices. Circ Res. 106:674–685. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Boink GJ, Christoffels VM, Robinson RB and
Tan HL: The past, present, and future of pacemaker therapies.
Trends Cardiovasc Med. 25:661–673. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cingolani E, Goldhaber JI and Marban E:
Next-generation pacemakers: From small devices to biological
pacemakers. Nat Rev Cardiol. 15:139–150. 2018. View Article : Google Scholar :
|
4
|
Edelberg JM, Aird WC and Rosenberg RD:
Enhancement of murine cardiac chronotropy by the molecular transfer
of the human beta2 adrenergic receptor cDNA. J Clin Invest.
101:337–343. 1998. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Boink GJ, Nearing BD, Shlapakova IN, Duan
L, Kryukova Y, Bobkov Y, Tan HL, Cohen IS, Danilo P Jr, Robinson
RB, et al: Ca(2+)-stimulated adenylyl cyclase AC1 generates
efficient biological pacing as single gene therapy and in
combination with HCN2. Circulation. 126:528–536. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miake J, Marbán E and Nuss HB: Biological
pacemaker created by gene transfer. Nature. 419:132–133. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Qu J, Plotnikov AN, Danilo P Jr,
Shlapakova I, Cohen IS, Robinson RB and Rosen MR: Expression and
function of a biological pacemaker in canine heart. Circulation.
107:1106–1109. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bucchi A, Plotnikov AN, Shlapakova I,
Danilo P Jr, Kryukova Y, Qu J, Lu Z, Liu H, Pan Z, Potapova I, et
al: Wild-type and mutant HCN channels in a tandem
biological-electronic cardiac pacemaker. Circulation. 114:992–999.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Boink GJ, Duan L, Nearing BD, Shlapakova
IN, Sosunov EA, Anyukhovsky EP, Bobkov E, Kryukova Y, Ozgen N,
Danilo P Jr, et al: HCN2/SkM1 gene transfer into canine left bundle
branch induces stable, autonomically responsive biological pacing
at physiological heart rates. J Am Coll Cardiol. 61:1192–1201.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruhparwar A, Tebbenjohanns J, Niehaus M,
Mengel M, Irtel T, Kofidis T, Pichlmaier AM and Haverich A:
Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur J
Cardiothorac Surg. 21:853–857. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kehat I, Khimovich L, Caspi O, Gepstein A,
Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J and Gepstein
L: Electromechanical integration of cardiomyocytes derived from
human embryonic stem cells. Nat Biotechnol. 22:1282–1289. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xue T, Cho HC, Akar FG, Tsang SY, Jones
SP, Marbán E, Tomaselli GF and Li RA: Functional integration of
electrically active cardiac derivatives from genetically engineered
human embryonic stem cells with quiescent recipient ventricular
cardiomyocytes: Insights into the development of cell-based
pacemakers. Circulation. 111:11–20. 2005. View Article : Google Scholar
|
13
|
Plotnikov AN, Shlapakova I, Szabolcs MJ,
Danilo P Jr, Lorell BH, Potapova IA, Lu Z, Rosen AB, Mathias RT,
Brink PR, et al: Xenografted adult human mesenchymal stem cells
provide a platform for sustained biological pacemaker function in
canine heart. Circulation. 116:706–713. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shlapakova IN, Nearing BD, Lau DH, Boink
GJ, Danilo P Jr, Kryukova Y, Robinson RB, Cohen IS, Rosen MR and
Verrier RL: Biological pacemakers in canines exhibit positive
chronotropic response to emotional arousal. Heart Rhythm.
7:1835–1840. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chauveau S, Anyukhovsky EP, Ben-Ari M,
Naor S, Jiang YP, Danilo P Jr, Rahim T, Burke S, Qiu X, Potapova
IA, et al: Induced pluripotent stem cell-derived cardiomyocytes
provide in vivo biological pacemaker function. Circ Arrhythm
Electrophysiol. 10:e0045082017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dmitrieva RI, Minullina IR, Bilibina AA,
Tarasova OV, Anisimov SV and Zaritskey AY: Bone marrow- and
subcutaneous adipose tissue-derived mesenchymal stem cells:
Differences and similarities. Cell Cycle. 11:377–383. 2012.
View Article : Google Scholar
|
17
|
Joo HJ, Kim JH and Hong SJ: Adipose
tissue-derived stem cells for myocardial regeneration. Korean Circ
J. 47:151–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brade T, Gessert S, Kuhl M and Pandur P:
The amphibian second heart field: Xenopus islet-1 is required for
cardiovascular development. Dev Biol. 311:297–310. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bu L, Jiang X, Martin-Puig S, Caron L, Zhu
S, Shao Y, Roberts DJ, Huang PL, Domian IJ and Chien KR: Human ISL1
heart progenitors generate diverse multipotent cardiovascular cell
lineages. Nature. 460:113–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Weinberger F, Mehrkens D, Friedrich FW,
Stubbendorff M, Hua X, Müller JC, Schrepfer S, Evans SM, Carrier L
and Eschenhagen T: Localization of Islet-1-positive cells in the
healthy and infarcted adult murine heart. Circ Res. 110:1303–1310.
2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mommersteeg MT, Dominguez JN, Wiese C,
Norden J, de Gier-de VC, Burch JB, Kispert A, Brown NA, Moorman AF
and Christoffels VM: The sinus venosus progenitors separate and
diversify from the first and second heart fields early in
development. Cardiovasc Res. 87:92–101. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sun Y, Liang X, Najafi N, Cass M, Lin L,
Cai CL, Chen J and Evans SM: Islet 1 is expressed in distinct
cardiovascular lineages, including pacemaker and coronary vascular
cells. Dev Biol. 304:286–296. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tessadori F, van Weerd JH, Burkhard SB,
Verkerk AO, de Pater E, Boukens BJ, Vink A, Christoffels VM and
Bakkers J: Identification and functional characterization of
cardiac pacemaker cells in zebrafish. PLoS One. 7:e476442012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hoffmann S, Berger IM, Glaser A, Bacon C,
Li L, Gretz N, Steinbeisser H, Rottbauer W, Just S and Rappold G:
Islet1 is a direct transcriptional target of the homeodomain
transcription factor Shox2 and rescues the Shox2-mediated
bradycardia. Basic Res Cardiol. 108:3392013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vedantham V, Galang G, Evangelista M, Deo
RC and Srivastava D: RNA sequencing of mouse sinoatrial node
reveals an upstream regulatory role for Islet-1 in cardiac
pacemaker cells. Circ Res. 116:797–803. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dorn T, Goedel A, Lam JT, Haas J, Tian Q,
Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R, et
al: Direct nkx2-5 transcriptional repression of isl1 controls
cardio-myocyte subtype identity. Stem Cells. 33:1113–1129. 2015.
View Article : Google Scholar
|
27
|
Liang X, Zhang Q, Cattaneo P, Zhuang S,
Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X, et al:
Transcription factor ISL1 is essential for pacemaker development
and function. J Clin Invest. 125:3256–3268. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bunnell BA, Flaat M, Gagliardi C, Patel B
and Ripoll C: Adipose-derived stem cells: Isolation, expansion and
differentiation. Methods. 45:115–120. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Golden HB, Gollapudi D, Gerilechaogetu F,
Li J, Cristales RJ, Peng X and Dostal DE: Isolation of cardiac
myocytes and fibroblasts from neonatal rat pups. Methods Mol Biol.
843:205–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu Y, Liu T, Song K, Ning R, Ma X and Cui
Z: ADSCs differentiated into cardiomyocytes in cardiac
microenvironment. Mol Cell Biochem. 324:117–129. 2009. View Article : Google Scholar
|
31
|
Choi YS, Dusting GJ, Stubbs S,
Arunothayaraj S, Han XL, Collas P, Morrison WA and Dilley RJ:
Differentiation of human adipose-derived stem cells into beating
cardiomyocytes. J Cell Mol Med. 14:878–889. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Moretti A, Caron L, Nakano A, Lam JT,
Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, et
al: Multipotent embryonic isl1+ progenitor cells lead to cardiac,
smooth muscle, and endothelial cell diversification. Cell.
127:1151–1165. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Moretti A, Bellin M, Jung CB, Thies TM,
Takashima Y, Bernshausen A, Schiemann M, Fischer S, Moosmang S,
Smith AG, et al: Mouse and human induced pluripotent stem cells as
a source for multipotent Isl1+ cardiovascular progenitors. FASEB J.
24:700–711. 2010. View Article : Google Scholar
|
35
|
Yi Q, Xu H, Yang K, Wang Y, Tan B, Tian J
and Zhu J: Islet-1 induces the differentiation of mesenchymal stem
cells into cardiomyocyte-like cells through the regulation of Gcn5
and DNMT-1. Mol Med Rep. 15:2511–2520. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shen H, Wang Y, Zhang Z, Yang J, Hu S and
Shen Z: Mesenchymal stem cells for cardiac regenerative therapy:
Optimization of cell differentiation strategy. Stem Cells Int.
2015:5247562015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schuleri KH, Boyle AJ and Hare JM:
Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp
Pharmacol. 195–218. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Biel M, Schneider A and Wahl C: Cardiac
HCN channels: Structure, function, and modulation. Trends
Cardiovasc Med. 12:206–212. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi W, Wymore R, Yu H, Wu J, Wymore RT,
Pan Z, Robinson RB, Dixon JE, McKinnon D and Cohen IS: Distribution
and prevalence of hyperpolarization-activated cation channel (HCN)
mRNA expression in cardiac tissues. Circ Res. 85:e1-e61999.
View Article : Google Scholar
|
40
|
Liu J, Dobrzynski H, Yanni J, Boyett MR
and Lei M: Organisation of the mouse sinoatrial node: Structure and
expression of HCN channels. Cardiovasc Res. 73:729–738. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zicha S, Fernández-Velasco M, Lonardo G,
L’Heureux N and Nattel S: Sinus node dysfunction and
hyperpolarization-activated (HCN) channel subunit remodeling in a
canine heart failure model. Cardiovasc Res. 66:472–481. 2005.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Li N, Csepe TA, Hansen BJ, Dobrzynski H,
Higgins RS, Kilic A, Mohler PJ, Janssen PM, Rosen MR, Biesiadecki
BJ and Fedorov VV: Molecular mapping of sinoatrial node HCN channel
expression in the human heart. Circ Arrhythm Electrophysiol.
8:1219–1227. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Gros DB and Jongsma HJ: Connexins in
mammalian heart function. Bioessays. 18:719–730. 1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Martinez AD, Hayrapetyan V, Moreno AP and
Beyer EC: Connexin43 and connexin45 form heteromeric gap junction
channels in which individual components determine permeability and
regulation. Circ Res. 90:1100–1107. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Boyett MR, Inada S, Yoo S, Li J, Liu J,
Tellez J, Greener ID, Honjo H, Billeter R, Lei M, et al: Connexins
in the sinoatrial and atrioventricular nodes. Adv Cardiol.
42:175–197. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lakatta EG, Vinogradova T, Lyashkov A,
Sirenko S, Zhu W, Ruknudin A and Maltsev VA: The integration of
spontaneous intracellular Ca2+ cycling and surface membrane ion
channel activation entrains normal automaticity in cells of the
heart’s pacemaker. Ann NY Acad Sci. 1080:178–206. 2006. View Article : Google Scholar
|
47
|
Maltsev VA and Lakatta EG: Dynamic
interactions of an intracellular Ca2+ clock and membrane ion
channel clock underlie robust initiation and regulation of cardiac
pacemaker function. Cardiovasc Res. 77:274–284. 2008. View Article : Google Scholar
|
48
|
Lakatta EG, Maltsev VA and Vinogradova TM:
A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane
voltage clocks controls the timekeeping mechanism of the heart’s
pacemaker. Circ Res. 106:659–673. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Espinoza-Lewis RA, Liu H, Sun C, Chen C,
Jiao K and Chen Y: Ectopic expression of Nkx2.5 suppresses the
formation of the sinoatrial node in mice. Dev Biol. 356:359–369.
2011. View Article : Google Scholar : PubMed/NCBI
|