1
|
Yuan FL, Wu QY, Miao ZN, Xu MH, Xu RS,
Jiang DL, Ye JX, Chen FH, Zhao MD, Wang HJ and Li X:
Osteoclast-derived extracellular vesicles: Novel regulators of
osteoclastogenesis and osteoclast-osteoblasts communication in bone
remodeling. Front Physiol. 9:6282018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Neman J, Hambrecht A, Cadry C and Jandial
R: Stem cell-mediated osteogenesis: Therapeutic potential for bone
tissue engineering. Biologics. 6:47–57. 2012.PubMed/NCBI
|
3
|
Xiao W, Wang Y, Pacios S, Li S and Graves
DT: Cellular and molecular aspects of bone remodeling. Front Oral
Biol. 18:9–16. 2016. View Article : Google Scholar
|
4
|
Deng L, Wang Y, Peng Y, Wu Y, Ding Y,
Jiang Y, Shen Z and Fu Q: Osteoblast-derived microvesicles: A novel
mechanism for communication between osteoblasts and osteoclasts.
Bone. 79:37–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim
YJ, Sathishkumar N, Yang DU and Yang DC: Ginseng saponins and the
treatment of osteoporosis: Mini literature review. J Ginseng Res.
37:261–268. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Collison J: Bone: miR-106b promotes
osteoporosis in mice. Nat Rev Rheumatol. 13:1302017.
|
7
|
Szabo G and Bala S: MicroRNAs in liver
disease. Nat Rev Gastroenterol Hepatol. 10:542–552. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Rottiers V and Naar AM: MicroRNAs in
metabolism and metabolic disorders. Nat Rev Mol Cell Biol.
13:239–250. 2012. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Krzeszinski JY, Wei W, Huynh H, Jin Z,
Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, et
al: miR-34a blocks osteoporosis and bone metastasis by inhibiting
osteoclastogenesis and Tgif2. Nature. 512:431–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang X, Guo B, Li Q, Peng J, Yang Z, Wang
A, Li D, Hou Z, Lv K, Kan G, et al: miR-214 targets ATF4 to inhibit
bone formation. Nat Med. 19:93–100. 2013. View Article : Google Scholar
|
11
|
Chen C, Cheng P, Xie H, Zhou HD, Wu XP,
Liao EY and Luo XH: MiR-503 regulates osteoclastogenesis via
targeting RANK. J Bone Miner Res. 29:338–347. 2014. View Article : Google Scholar
|
12
|
Guo LJ, Liao L, Yang L, Li Y and Jiang TJ:
MiR-125a TNF receptor-associated factor 6 to inhibit
osteoclastogenesis. Exp Cell Res. 321:142–152. 2014. View Article : Google Scholar
|
13
|
Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao
D, Peng J, Wang A, Li Q, Song J, et al: miR-214 promotes
osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol.
12:343–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y,
Dragas D, Dai Y, Marucha PT and Zhou X: MicroRNA-99 family targets
AKT/mTOR signaling pathway in dermal wound healing. PLoS One.
8:e644342013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R,
Cao Z, Singh B, Franklin JL, Wang J, Hu H, et al: lncRNA
MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance
via Wnt/β-catenin signaling. Nat Med. 23:1331–1341. 2017.PubMed/NCBI
|
16
|
Liu M, Han T, Shi S and Chen E: Long
noncoding RNA HAGLROS regulates cell apoptosis and autophagy in
lipopolysaccharides-induced WI-38 cells via modulating
miR-100/NF-κB axis. Biochem Biophys Res Commun. 500:589–596. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Seeliger C, Karpinski K, Haug AT, Vester
H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating
miRNAs and bone tissue miRNAs are associated with osteoporotic
fractures. J Bone Miner Res. 29:1718–1728. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q,
Lin R, Han Q, Li J and Zhao RC: MicroRNA-100 regulates osteogenic
differentiation of human adipose-derived mesenchymal stem cells by
targeting BMPR2. FEBS Lett. 586:2375–2381. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu J, Xu Y, Hu Y and Wang G: The role of
fibroblast growth factor 21 in the pathogenesis of non-alcoholic
fatty liver disease and implications for therapy. Metabolism.
64:380–390. 2015. View Article : Google Scholar
|
20
|
Charoenphandhu N, Suntornsaratoon P,
Krishnamra N, Sa-Nguanmoo P, Tanajak P, Wang X, Liang G, Li X,
Jiang C, Chattipakorn N and Chattipakorn S: Fibroblast growth
factor-21 restores insulin sensitivity but induces aberrant bone
micro-structure in obese insulin-resistant rats. J Bone Miner
Metab. 35:142–149. 2017. View Article : Google Scholar
|
21
|
Anuwatmatee S, Tang S, Wu BJ, Rye KA and
Ong KL: Fibroblast growth factor 21 in chronic kidney disease. Clin
Chim Acta. S0009–8981. 30432–1. 2017.PubMed/NCBI
|
22
|
Planavila A, Redondo I, Hondares E,
Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt
M, van Bilsen M and Villarroya F: Fibroblast growth factor 21
protects against cardiac hypertrophy in mice. Nat Commun.
4:20192013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Desai BN, Singhal G, Watanabe M,
Stevanovic D, Lundasen T, Fisher FM, Mather ML, Vardeh HG, Douris
N, Adams AC, et al: Fibroblast growth factor 21 (FGF21) is robustly
induced by ethanol and has a protective role in ethanol associated
liver injury. Mol Metab. 6:1395–1406. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao
Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth
factor 21 is an independent predictor of non-alcoholic fatty liver
disease: A 3-year prospective study in China. J Hepatol.
58:557–563. 2013. View Article : Google Scholar
|
25
|
Samson SL, Sathyanarayana P, Jogi M,
Gonzalez EV, Gutierrez A, Krishnamurthy R, Muthupillai R, Chan L
and Bajaj M: Exenatide decreases hepatic fibroblast growth factor
21 resistance in non-alcoholic fatty liver disease in a mouse model
of obesity and in a randomised controlled trial. Diabetologia.
54:3093–3100. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wei W, Dutchak PA, Wang X, Ding X, Wang X,
Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, et al:
Fibroblast growth factor 21 promotes bone loss by potentiating the
effects of peroxisome proliferator-activated receptor γ. Proc Natl
Acad Sci USA. 109:3143–3148. 2012. View Article : Google Scholar
|
27
|
Hao RH, Gao JL, Li M, Huang W, Zhu DL,
Thynn HN, Dong SS and Guo Y: Association between fibroblast growth
factor 21 and bone mineral density in adults. Endocrine.
59:296–303. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gallego-Escuredo JM, Lamarca MK,
Villarroya J, Domingo JC, Mateo MG, Gutierrez MDM, Vidal F,
Villarroya F, Domingo P and Giralt M: High FGF21 levels are
associated with altered bone homeostasis in HIV-1-infected
patients. Metabolism. 71:163–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee P, Linderman J, Smith S, Brychta RJ,
Perron R, Idelson C, Werner CD, Chen KY and Celi FS: Fibroblast
growth factor 21 (FGF21) and bone: Is there a relationship in
humans. Osteoporos Int. 24:3053–3057. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang X, Wei W, Krzeszinski JY, Wang Y and
Wan Y: A liver-bone endocrine relay by IGFBP1 promotes
osteoclasto-genesis and mediates FGF21-induced bone resorption.
Cell Metab. 22:811–824. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhao H, Zhang J, Shao H, Liu J, Jin M,
Chen J and Huang Y: Transforming growth factor β1/Smad4 signaling
affects osteoclast differentiation via regulation of miR-155
expression. Mol Cells. 40:211–221. 2017.PubMed/NCBI
|
32
|
Saeed AI, Sharov V, White J, Li J, Liang
W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et
al: TM4: A free, open-source system for microarray data management
and analysis. Biotechniques. 34:374–378. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
34
|
Gargiulo S, Gramanzini M, Megna R, Greco
A, Albanese S, Manfredi C and Brunetti A: Evaluation of growth
patterns and body composition in C57Bl/6J mice using dual energy
X-ray absorptiometry. Biomed Res Int. 2014:2530672014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu FY, Xie CQ, Sun JT, Peng W and Huang
XW: Overexpressed miR-145 inhibits osteoclastogenesis in
RANKL-induced bone marrow-derived macrophages and ovariectomized
mice by regulation of Smad3. Life Sci. 202:11–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Frith JE, Kusuma GD, Carthew J, Li F,
Cloonan N, Gomez GA and Cooper-White JJ: Mechanically-sensitive
miRNAs bias human mesenchymal stem cell fate via mTOR signalling.
Nat Commun. 9:2572018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wan Y: Bone marrow mesenchymal stem cells:
Fat on and blast off by FGF21. Int J Biochem Cell Biol. 45:546–549.
2013. View Article : Google Scholar :
|