1
|
Gago-Díaz M, Brion M, Gallego P, Calvo F,
Robledo-Carmona J, Saura D, Sánchez V, Bermejo J, Sevilla T,
Newton-Cheh C, et al: The genetic component of bicuspid aortic
valve and aortic dilation. An exome-wide association study. J Mol
Cell Cardiol. 102:3–9. 2017. View Article : Google Scholar
|
2
|
Li Y, Wei X, Zhao Z, Liao Y, He J, Xiong
T, Xu Y, Lv W, Ou Y, Tang H, et al: Prevalence and complications of
bicuspid aortic valve in Chinese according to echocardiographic
database. Am J Cardiol. 120:287–291. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Roberts WC, Janning KG, Vowels TJ, Ko JM,
Hamman BL and Hebeler RF Jr: Presence of a congenitally bicuspid
aortic valve among patients having combined mitral and aortic valve
replacement. Am J Cardiol. 109:263–271. 2012. View Article : Google Scholar
|
4
|
Prakash SK, Bossé Y, Muehlschlegel JD,
Michelena HI, Limongelli G, Della Corte A, Pluchinotta FR, Russo
MG, Evangelista A, Benson DW, et al: A roadmap to investigate the
genetic basis of bicuspid aortic valve and its complications:
Insights from the International BAVCon (Bicuspid Aortic Valve
Consortium). J Am Coll Cardiol. 64:832–839. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Girdauskas E and Petersen J: Update on
bicuspid aortic valve aortopathy. Curr Opin Cardiol. 32:651–654.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kong WKF, Regeer MV, Poh KK, Yip JW, van
Rosendael PJ, Yeo TC, Tay E, Kamperidis V, van der Velde ET,
Mertens B, et al: Inter-ethnic differences in valve morphology,
valvular dysfunction, and aortopathy between Asian and European
patients with bicuspid aortic valve. Eur Heart J. 39:1308–1313.
2018. View Article : Google Scholar
|
7
|
Zegri-Reiriz I, de Alarcón A, Muñoz P,
Martínez Sellés M, González-Ramallo V, Miro JM, Falces C, Gonzalez
Rico C, Kortajarena Urkola X, Lepe JA, et al: Infective
endocarditis in patients with bicuspid aortic valve or mitral valve
prolapse. J Am Coll Cardiol. 71:2731–2740. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lluri G, Renella P, Finn JP, Vorobiof G,
Aboulhosn J and Deb A: Prognostic significance of left ventricular
fibrosis in patients with congenital bicuspid aortic valve. Am J
Cardiol. 120:1176–1179. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Masri A, Svensson LG, Griffin BP and Desai
MY: Contemporary natural history of bicuspid aortic valve disease:
A systematic review. Heart. 103:1323–1330. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Padang R, Bagnall RD and Semsarian C:
Genetic basis of familial valvular heart disease. Circ Cardiovasc
Genet. 5:569–580. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang B, Zhou W, Jiao J, Nielsen JB, Mathis
MR, Heydarpour M, Lettre G, Folkersen L, Prakash S, Schurmann C, et
al: Protein-altering and regulatory genetic variants near GATA4
implicated in bicuspid aortic valve. Nat Commun. 8:154812017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Pan S, Lai H, Shen Y, Breeze C, Beck S,
Hong T, Wang C and Teschendorff AE: DNA methylome analysis reveals
distinct epigenetic patterns of ascending aortic dissection and
bicuspid aortic valve. Cardiovasc Res. 113:692–704. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Giusti B, Sticchi E, De Cario R, Magi A,
Nistri S and Pepe G: Genetic bases of bicuspid aortic valve: The
contribution of traditional and high-throughput sequencing
approaches on research and diagnosis. Front Physiol. 8:6122017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Garg V, Muth AN, Ransom JF, Schluterman
MK, Barnes R, King IN, Grossfeld PD and Srivastava D: Mutations in
NOTCH1 cause aortic valve disease. Nature. 437:270–274. 2005.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Dargis N, Lamontagne M, Gaudreault N,
Sbarra L, Henry C, Pibarot P, Mathieu P and Bossé Y: Identification
of gender-specific genetic variants in patients with bicuspid
aortic valve. Am J Cardiol. 117:420–426. 2016. View Article : Google Scholar
|
16
|
Gillis E, Kumar AA, Luyckx I, Preuss C,
Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N,
Vandeweyer G, et al: Candidate gene resequencing in a large
bicuspid aortic valve-associated thoracic aortic aneurysm cohort:
SMAD6 as an important contributor. Front Physiol. 8:4002017.
View Article : Google Scholar :
|
17
|
Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu
Q, Chen Z, He Y, Hu P, Xu Q, et al: Targeted next-generation
sequencing identified ADAMTS5 as novel genetic substrate in
patients with bicuspid aortic valve. Int J Cardiol. 252:150–155.
2018. View Article : Google Scholar
|
18
|
Li RG, Xu YJ, Wang J, Liu XY, Yuan F,
Huang RT, Xue S, Li L, Liu H, Li YJ, et al: GATA4 loss-of-function
mutation and the congenitally bicuspid aortic valve. Am J Cardiol.
121:469–474. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Padang R, Bagnall RD, Richmond DR, Bannon
PG and Semsarian C: Rare non-synonymous variations in the
transcriptional activation domains of GATA5 in bicuspid aortic
valve disease. J Mol Cell Cardiol. 53:277–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bonachea EM, Chang SW, Zender G, LaHaye S,
Fitzgerald-Butt S, McBride KL and Garg V: Rare GATA5 sequence
variants identified in individuals with bicuspid aortic valve.
Pediatr Res. 76:211–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu
L, Liu H, Li RG, Xu YJ, Wang Q, et al: GATA5 loss-of-function
mutations associated with congenital bicuspid aortic valve. Int J
Mol Med. 33:1219–1226. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu YJ, Di RM, Qiao Q, Li XM, Huang RT, Xue
S, Liu XY, Wang J and Yang YQ: GATA6 loss-of-function mutation
contributes to congenital bicuspid aortic valve. Gene. 663:115–120.
2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gharibeh L, Komati H, Bossé Y, Boodhwani
M, Heydarpour M, Fortier M, Hassandazeh R, Ngu J, Mathieu P, Body
S, et al: GATA6 regulates aortic valve remodeling and its
haploinsuf-ficiency leads to RL-type bicuspid aortic valve.
Circulation. 138:1025–1038. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM,
Liu XY, Zhang XL, Li RG, Xu YJ, Hou XM, et al: A novel NKX2.5
loss-of-function mutation associated with congenital bicuspid
aortic valve. Am J Cardiol. 114:1891–1895. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pereira FA, Qiu Y, Zhou G, Tsai MJ and
Tsai SY: The orphan nuclear receptor COUP-TFII is required for
angiogenesis and heart development. Genes Dev. 13:1037–1049. 1999.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin FJ, You LR, Yu CT, Hsu WH, Tsai MJ and
Tsai SY: Endocardial cushion morphogenesis and coronary vessel
development require chicken ovalbumin upstream
promoter-transcription factor II. Arterioscler Thromb Vasc Biol.
32:e135–e146. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pikkarainen S, Tokola H, Kerkelä R and
Ruskoaho H: GATA transcription factors in the developing and adult
heart. Cardiovasc Res. 63:196–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lentjes MH, Niessen HE, Akiyama Y, de
Bruïne AP, Melotte V and van Engeland M: The emerging role of GATA
transcription factors in development and disease. Expert Rev Mol
Med. 18:e32016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Akazawa H and Komuro I: Cardiac
transcription factor Csx/Nkx2-5: Its role in cardiac development
and diseases. Pharmacol Ther. 107:252–268. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Al Turki S, Manickaraj AK, Mercer CL,
Gerety SS, Hitz MP, Lindsay S, D’Alessandro LCA, Swaminathan GJ,
Bentham J, Arndt AK, et al: Rare variants in NR2F2 cause congenital
heart defects in humans. Am J Hum Genet. 94:574–585. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Qiao XH, Wang Q, Wang J, Liu XY, Xu YJ,
Huang RT, Xue S, Li YJ, Zhang M, Qu XK, et al: A novel NR2F2
loss-of-function mutation predisposes to congenital heart defect.
Eur J Med Genet. 61:197–203. 2018. View Article : Google Scholar
|
32
|
Bashamboo A, Eozenou C, Jorgensen A,
Bignon-Topalovic J, Siffroi JP, Hyon C, Tar A, Nagy P, Sólyom J,
Halász Z, et al: Loss of function of the nuclear receptor NR2F2,
encoding COUP-TF2, causes testis development and cardiac defects in
46, XX children. Am J Hum Genet. 102:487–493. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Upadia J, Gonzales PR and Robin NH: Novel
de novo pathogenic variant in the NR2F2 gene in a boy with
congenital heart defect and dysmorphic features. Am J Med Genet A.
176:1423–1426. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu Y, Li B, Xu Y and Sun K: Mutation
screening of GATA4 gene in CTD patients within Chinese Han
population. Pediatr Cardiol. 38:506–512. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu Y, Lei W, Yang J, Wei YC, Zhao ZL, Zhao
ZA and Hu S: Functional mutant GATA4 identification and potential
application in preimplantation diagnosis of congenital heart
diseases. Gene. 641:349–354. 2018. View Article : Google Scholar
|
36
|
Hempel M, Casar Tena T, Diehl T, Burczyk
MS, Strom TM, Kubisch C, Philipp M and Lessel D: Compound
heterozygous GATA5 mutations in a girl with hydrops fetalis,
congenital heart defects and genital anomalies. Hum Genet.
136:339–346. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang E, Hong N, Chen S, Fu Q, Li F, Yu Y
and Sun K: Targeted sequencing identifies novel GATA6 variants in a
large cohort of patients with conotruncal heart defects. Gene.
641:341–348. 2018. View Article : Google Scholar
|
38
|
Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou
XM, Qu XK, Liu X, Huang RT, Xue S, et al: Prevalence and spectrum
of NKX2.5 mutations in patients with congenital atrial septal
defect and atrioventricular block. Mol Med Rep. 15:2247–2254. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zaidi S and Brueckner M: Genetics and
genomics of congenital heart disease. Circ Res. 120:923–940. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Li YJ and Yang YQ: An update on the
molecular diagnosis of congenital heart disease: Focus on
loss-of-function mutations. Expert Rev Mol Diagn. 17:393–401. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li N, Wang ZS, Wang XH, Xu YJ, Qiao Q, Li
XM, Di RM, Guo XJ, Li RG, Zhang M, et al: A SHOX2 loss-of-function
mutation underlying familial atrial fibrillation. Int J Med Sci.
15:1564–1572. 2018. View Article : Google Scholar :
|
42
|
Qiao XH, Wang F, Zhang XL, Huang RT, Xue
S, Wang J, Qiu XB, Liu XY and Yang YQ: MEF2C loss-of-function
mutation contributes to congenital heart defects. Int J Med Sci.
14:1143–1153. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Huang RT, Wang J, Xue S, Qiu XB, Shi HY,
Li RG, Qu XK, Yang XX, Liu H, Li N, et al: TBX20 loss-of-function
mutation responsible for familial tetralogy of Fallot or sporadic
persistent truncus arteriosus. Int J Med Sci. 14:323–332. 2017.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu CX, Gong HR, Liu XY, Wang J, Zhao CM,
Huang RT, Xue S and Yang YQ: A novel HAND2 loss-of-function
mutation responsible for tetralogy of Fallot. Int J Mol Med.
37:445–451. 2016. View Article : Google Scholar
|
45
|
Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang
M, Shi HY, Hou XM, Liu X, Yuan F, et al: CASZ1 loss-of-function
mutation contributes to familial dilated cardiomyopathy. Clin Chem
Lab Med. 55:1417–1425. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li L, Wang J, Liu XY, Liu H, Shi HY, Yang
XX, Li N, Li YJ, Huang RT, Xue S, et al: HAND1 loss-of-function
mutation contributes to congenital double outlet right ventricle.
Int J Mol Med. 39:711–718. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J,
Li RG, Liu H, Zhang M, Shi HY, Zhao L, et al: MEF2C
loss-of-function mutation associated with familial dilated
cardiomyopathy. Clin Chem Lab Med. 56:502–511. 2018. View Article : Google Scholar
|
48
|
Yamazaki T, Suehiro J, Miyazaki H, Minami
T, Kodama T, Miyazono K and Watabe T: The COUP-TFII variant lacking
a DNA-binding domain inhibits the activation of the Cyp7a1 promoter
through physical interaction with COUP-TFII. Biochem J.
452:345–357. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huggins GS, Bacani CJ, Boltax J, Aikawa R
and Leiden JM: Friend of GATA 2 physically interacts with chicken
ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and
represses COUP-TF2-dependent activation of the atrial natriuretic
factor promoter. J Biol Chem. 276:28029–28036. 2001. View Article : Google Scholar : PubMed/NCBI
|