1
|
Wachtel EV and Hendricks-Munoz KD: Current
management of the infant who presents with neonatal encephalopathy.
Curr Probl Pediatr Adolesc Health Care. 41:132–153. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rybak-Wolf A, Stottmeister C, Glažar P,
Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss
R, et al: Circular RNAs in the mammalian brain are highly abundant,
conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lasda E and Parker R: Circular RNAs:
Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen
B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals
an abundant circHIPK3 that regulates cell growth by sponging
multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P
and Wu M: CircRNA: Functions and properties of a novel potential
biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hansen TB, Kjems J and Damgaard CK:
Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mehta SL, Pandi G and Vemuganti R:
Circular RNA expression profiles alter significantly in mouse brain
after transient focal ischemia. Stroke. 48:2541–2548. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu C, Zhang C, Yang J, Geng X, Du H, Ji X
and Zhao H: Screening circular RNA expression patterns following
focal cerebral ischemia in mice. Oncotarget. 8:86535–86547.
2017.PubMed/NCBI
|
14
|
Dharap A, Nakka VP and Vemuganti R: Effect
of focal ischemia on long noncoding RNAs. Stroke. 43:2800–2802.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Z, Gerstein M and Snyder M: RNA-Seq:
A revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63.
2009. View
Article : Google Scholar
|
16
|
Zhao F, Qu Y, Xiong T, Duan Z, Ye Q and Mu
D: The neuroprotective role of TERT via an antiapoptotic mechanism
in neonatal rats after hypoxia-ischemia brain injury. Neurosci
Lett. 515:39–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu L, Ni W, Liu S, Cai B, Xing H and Wang
S: Transcriptomics analysis of apple leaves in response to
alternaria alternata apple pathotype infection. Front Plant Sci.
8:222017. View Article : Google Scholar :
|
19
|
Wang Z, Ruan B, Jin Y, Zhang Y, Li J, Zhu
L, Xu W, Feng L, Jin H and Wang X: Identification of KLK10 as a
therapeutic target to reverse trastuzumab resistance in breast
cancer. Oncotarget. 7:79494–79502. 2016.PubMed/NCBI
|
20
|
Harrow J, Frankish A, Gonzalez JM,
Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa
A, Searle S, et al: GENCODE: The reference human genome annotation
for The ENCODE project. Genome Res. 22:1760–1774. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Quinlan AR and Hall IM: BEDTools: A
flexible suite of utilities for comparing genomic features.
Bioinformatics. 26:841–842. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Hollis ER II: Axon guidance molecules and
neural circuit remodeling after spinal cord injury.
Neurotherapeutics. 13:360–369. 2016. View Article : Google Scholar :
|
24
|
Park K and Biederer T: Neuronal adhesion
and synapse organization in recovery after brain injury. Future
Neurol. 8:555–567. 2013. View Article : Google Scholar
|
25
|
Dang YX, Shi KN and Wang XM: Early changes
in glutamate metabolism and perfusion in basal ganglia following
hypoxia-ischemia in neonatal piglets: A multi-sequence 3.0T MR
study. Front Physiol. 8:2372017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cai Q, Wang T, Yang WJ and Fen X:
Protective mechanisms of microRNA-27a against oxygen-glucose
deprivation-induced injuries in hippocampal neurons. Neural Regen
Res. 11:1285–1292. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yin X, Li L, Zhang X, Yang Y, Chai Y, Han
X and Feng Z: Development of neural stem cells at different sites
of fetus brain of different gestational age. Int J Clin Exp Pathol.
6:2757–2764. 2013.PubMed/NCBI
|
28
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight. Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao R, Qian L and Jiang L: Identification
of retinopathy of prematurity related miRNAs in hyperoxia-induced
neonatal rats by deep sequencing. Int J Mol Sci. 16:840–856. 2014.
View Article : Google Scholar
|
30
|
Chandran R, Mehta SL and Vemuganti R:
Non-coding RNAs and neuroprotection after acute CNS injuries.
Neurochem Int. 111:12–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gaudet AD, Fonken LK, Watkins LR, Nelson
RJ and Popovich PG: MicroRNAs: Roles in regulating
neuroinflammation. Neuroscientist. 24:221–245. 2018. View Article : Google Scholar
|
32
|
Ge X, Han Z, Chen F, Wang H, Zhang B,
Jiang R, Lei P and Zhang J: MiR-21 alleviates secondary blood-brain
barrier damage after traumatic brain injury in rats. Brain Res.
1603:150–157. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Han Z, Chen F, Ge X, Tan J, Lei P and
Zhang J: miR-21 alleviated apoptosis of cortical neurons through
promoting PTEN-Akt signaling pathway in vitro after experimental
traumatic brain injury. Brain Res. 1582:12–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Redell JB, Zhao J and Dash PK: Altered
expression of miRNA-21 and its targets in the hippocampus after
traumatic brain injury. J Neurosci Res. 89:212–221. 2011.
View Article : Google Scholar
|
35
|
Zhao R, Hou W, Zhang Z, Qian L and Jiang
L: Differential expression of Mir-1 26 and vascular endothelial
growth factor in retinal cells of metabolic acidosis-induced
neonatal rats. J Nanosci Nanotechnol. 15:2088–2093. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhao RB, Qian LJ and Jiang L:
miRNA-dependent cross-talk between VEGF and Ang-2 in
hypoxia-induced microvascular dysfunction. Biochem Biophys Res
Commun. 452:428–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sabirzhanov B, Zhao Z, Stoica BA, Loane
DJ, Wu J, Borroto C, Dorsey SG and Faden AI: Downregulation of
miR-23a and miR-27a following experimental traumatic brain injury
induces neuronal cell death through activation of proapoptotic
Bcl-2 proteins. J Neurosci. 34:10055–10071. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhong J, Jiang L, Cheng C, Huang Z, Zhang
H, Liu H, He J, Cao F, Peng J, Jiang Y and Sun X: Altered
expression of long non-coding RNA and mRNA in mouse cortex after
traumatic brain injury. Brain Res. 1646:589–600. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Huang Li Z, Bao C, Chen C, Lin L, Wang M,
Zhong X, Yu G, Hu B, Dai WL, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ebbesen KK, Kjems J and Hansen TB:
Circular RNAs: Identification, biogenesis and function. Biochim
Biophys Acta. 1859.163–168. 2016.
|
42
|
Bhalala OG, Srikanth M and Kessler JA: The
emerging roles of microRNAs in CNS injuries. Nat Rev Neurol.
9:328–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu NK and Xu XM: MicroRNA in central
nervous system trauma and degenerative disorders. Physiol Genomics.
43:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen Q, Xu J, Li L, Li H, Mao S, Zhang F,
Zen K, Zhang CY and Zhang Q: MicroRNA-23a/b and microRNA-27a/b
suppress Apaf-1 protein and alleviate hypoxia-induced neuronal
apoptosis. Cell Death Dis. 5:e11322014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen Q, Zhang F, Wang Y, Liu Z, Sun A, Zen
K, Zhang CY and Zhang Q: The transcription factor c-Myc suppresses
MiR-23b and MiR-27b transcription during fetal distress and
increases the sensitivity of neurons to hypoxia-induced apoptosis.
PLoS One. 10:e01202172015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shin JH, Park YM, Kim DH, Moon GJ, Bang
OY, Ohn T and Kim HH: Ischemic brain extract increases SDF-1
expression in astrocytes through the CXCR2/miR-223/miR-27b pathway.
Biochim Biophys Acta. 1839.826–836. 2014.
|