Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review)
- Authors:
- Diana Raquel Rodríguez‑Rodríguez
- Ramiro Ramírez‑Solís
- Mario Alberto Garza‑Elizondo
- María De Lourdes Garza‑Rodríguez
- Hugo Alberto Barrera‑Saldaña
-
Affiliations: Universidad Autónoma de Nuevo León, Department of Biochemistry and Molecular Medicine, School of Medicine and University Hospital ‘Dr. José E. González’, Monterrey, Nuevo León 64460, México, Institutional Core Laboratories, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, Universidad Autónoma de Nuevo León, Service of Rheumatology, School of Medicine and University Hospital 'Dr. José E. González', Monterrey, Nuevo León 64460, México - Published online on: February 26, 2019 https://doi.org/10.3892/ijmm.2019.4112
- Pages: 1559-1574
-
Copyright: © Rodríguez‑Rodríguez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Im W, Moon J and Kim M: Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord. 9:136–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gaj T, Gersbach CA and Barbas CF III: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397–405. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sander JD and Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 32:347–355. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cox DBT, Platt RJ and Zhang F: Therapeutic genome editing: Prospects and challenges. Nat Med. 21:121–131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F and Lacroix E: A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31:2952–2962. 2003. View Article : Google Scholar : PubMed/NCBI | |
Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 11:636–646. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 29:143–148. 2011. View Article : Google Scholar | |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Horvath P and Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. Science. 327:167–170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sorek R, Kunin V and Hugenholtz P: CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 6:181–186. 2008. View Article : Google Scholar | |
Singh V, Braddick D and Dhar PK: Exploring the potential of genome editing CRISPR-Cas9 technology. Gene. 599:1–18. 2017. View Article : Google Scholar | |
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, et al: An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 13:722–736. 2015. View Article : Google Scholar | |
Mojica FJ, Ferrer C, Juez G and Rodríguez-Valera F: Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol. 17:85–93. 1995. View Article : Google Scholar : PubMed/NCBI | |
Riehle MM, Bennett AF and Long AD: Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA. 98:525–530. 2001. View Article : Google Scholar : PubMed/NCBI | |
DeBoy RT, Mongodin EF, Emerson JB and Nelson KE: Chromosome evolution in the Thermotogales: Large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol. 188:2364–2374. 2006. View Article : Google Scholar : PubMed/NCBI | |
Makarova KS, Aravind L, Grishin NV, Rogozin IB and Koonin EV: A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30:482–496. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 169:5429–5433. 1987. View Article : Google Scholar : PubMed/NCBI | |
Mojica FJ, Díez-Villaseñor C, Soria E and Juez G: Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 36:244–246. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jansen R, Embden JD, Gaastra W and Schouls LM: Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 43:1565–1575. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mojica FJ, Díez-Villaseñor C, García-Martínez J and Soria E: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 60:174–182. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bolotin A, Quinquis B, Sorokin A and Ehrlich SD: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 151:2551–2561. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pourcel C, Salvignol G and Vergnaud G: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 151:653–663. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV and van der Oost J: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 321:960–964. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH and Moineau S: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468:67–71. 2010. View Article : Google Scholar : PubMed/NCBI | |
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39:9275–9282. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church GM: RNA-guided human genome engineering via Cas9. Science. 339:823–826. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cornu TI, Mussolino C and Cathomen T: Refining strategies to translate genome editing to the clinic. Nat Med. 23:415–423. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cyranoski D: CRISPR gene-editing tested in a person for the first time. Nature. 539:479. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cyranoski D: Chinese scientists to pioneer first human CRISPR trial. Nature. 535:476–477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shub DA, Goodrich-Blair H and Eddy SR: Amino-acid-sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci. 19:402–404. 1994. View Article : Google Scholar : PubMed/NCBI | |
Al-Attar S, Westra ER, van der Oost J and Brouns SJ: Clustered regularly interspaced short palindromic repeats (CRISPRs): The hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem. 392:277–289. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wright AV, Nuñez JK and Doudna JA: Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Wen Y and Guo X: CRISPR/Cas9 for genome editing: Progress implications and challenges. Hum Mol Genet. 23:R40–R46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Canver MC, Bauer DE and Orkin SH: Functional interrogation of non-coding DNA through CRISPR genome editing. Methods. 121–122. 118–129. 2017. | |
Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V: crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 10:841–851. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gasiunas G, Barrangou R, Horvath P and Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 109:E2579–E2586. 2012. View Article : Google Scholar : PubMed/NCBI | |
Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco E, Gotta GM, Maeder ML, Kennedy EM, et al: Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16:2572015. View Article : Google Scholar : PubMed/NCBI | |
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al: In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520:186–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ and Thomson JA: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 110:15644–15649. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Ding X, Feng Y, Seebeck T, Jiang Y and Davis GD: Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat Commun. 8:149582017. View Article : Google Scholar : PubMed/NCBI | |
Price AA, Sampson TR, Ratner HK, Grakoui A and Weiss DS: Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA. 112:6164–6169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Murovec J, Pirc Ž and Yang B: New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J. 15:917–926. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P and Pazos F: Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res. 44:W267–W271. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaur K, Gupta AK, Rajput A and Kumar M: ge-CRISPR-an integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system. Sci Rep. 6:308702016. View Article : Google Scholar | |
Naito Y, Hino K, Bono H and Ui-Tei K: CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 31:1120–1123. 2015. View Article : Google Scholar : | |
Heigwer F, Kerr G and Boutros M: E-CRISP: Fast CRISPR target site identification. Nat Methods. 11:122–123. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Liu W and Wang X: WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 16:2182015. View Article : Google Scholar : PubMed/NCBI | |
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ and Root DE: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. 32:1262–1267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chari R, Mali P, Moosburner M and Church GM: Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. 12:823–826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chari R, Yeo NC, Chavez A and Church GM: sgRNA scorer 2.0: A species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol. 6:902–904. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK and Giraldez AJ: CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 12:982–988. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wei Z, Dominguez A, Li Y, Wang X and Qi LS: CRISPR-ERA: A comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics. 31:3676–3678. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stemmer M, Thumberger T, Del Sol, Keyer M, Wittbrodt J and Mateo JL: CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One. 10:e01246332015. View Article : Google Scholar : PubMed/NCBI | |
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, et al: Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17:1482016. View Article : Google Scholar : PubMed/NCBI | |
Montague TG, Cruz JM, Gagnon JA, Church GM and Valen E: CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42:W401–W407. 2014. View Article : Google Scholar : PubMed/NCBI | |
Prykhozhij SV, Rajan V, Gaston D and Berman JN: CRISPR multitargeter: A web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. 10:e01193722015. View Article : Google Scholar : PubMed/NCBI | |
O’Brien A and Bailey TL: GT-Scan: Identifying unique genomic targets. Bioinformatics. 30:2673–2675. 2014. View Article : Google Scholar : | |
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al: DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31:827–832. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park J, Bae S and Kim JS: Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics. 31:4014–4016. 2015.PubMed/NCBI | |
Bae S, Park J and Kim JS: Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 30:1473–1475. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cradick TJ, Qiu P, Lee CM, Fine EJ and Bao G: COSMID: A web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids. 3:e2142014. View Article : Google Scholar : PubMed/NCBI | |
Hough SH, Kancleris K, Brody L, Humphryes-Kirilov N, Wolanski J, Dunaway K, Ajetunmobi A and Dillard V: Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments. BMC Bioinformatics. 18:1672017. View Article : Google Scholar : PubMed/NCBI | |
Güell M, Yang L and Church GM: Genome editing assessment using CRISPR genome analyzer (CRISPR-GA). Bioinformatics. 30:2968–2970. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, Gale M, Xu Q and Yan Q: An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 44:e1492016.PubMed/NCBI | |
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y and Zhang F: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154:1380–1389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Sakuma T, Yokonishi T, Katagiri K, Kamimura S, Ogonuki N, Ogura A, Yamamoto T and Ogawa T: Genome editing in mouse spermatogonial stem cell lines Using TALEN and double-nicking CRISPR/Cas9. Stem Cell Reports. 5:75–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sakuma T, Masaki K, Abe-Chayama H, Mochida K, Yamamoto T and Chayama K: Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells. 21:1253–1262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F: Rationally engineered Cas9 nucleases with improved specificity. Science. 351:84–88. 2016. View Article : Google Scholar : | |
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ and Joung JK: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 32:569–576. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yan Z, Li M, Peabody M and He TC: CRISPR clear? Dimeric Cas9-Fok1 nucleases improve genome-editing specificity. Genes Dis. 1:6–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guilinger JP, Thompson DB and Liu DR: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 32:577–582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE and Doudna JA: Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA. 112:2984–2989. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ and Church GM: A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 13:868–874. 2016. View Article : Google Scholar : PubMed/NCBI | |
Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533:420–424. 2016. View Article : Google Scholar : PubMed/NCBI | |
Murugan K, Babu K, Sundaresan R, Rajan R and Sashital DG: The revolution continues: Newly discovered systems expand the CRISPR-Cas toolkit. Mol Cell. 68:15–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 60:385–397. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016. View Article : Google Scholar : PubMed/NCBI | |
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13. Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI | |
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K and Otonkoski T: Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports. 5:448–459. 2015. View Article : Google Scholar : PubMed/NCBI | |
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517:583–588. 2015. View Article : Google Scholar : | |
Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M and Mahfouz MM: RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J. 13:578–589. 2015. View Article : Google Scholar | |
Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO and Skok JA: CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun. 7:117072016. View Article : Google Scholar : | |
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A and Adli M: Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun. 8:147252017. View Article : Google Scholar : PubMed/NCBI | |
Pankowicz FP, Barzi M, Legras X, Hubert L, Mi T, Tomolonis JA, Ravishankar M, Sun Q, Yang D, Borowiak M, et al: Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun. 7:126422016. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE and Slukvin II: CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids. 4:e2682015. View Article : Google Scholar : PubMed/NCBI | |
Brunger JM, Zutshi A, Willard VP, Gersbach CA and Guilak F: Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Reports. 8:1202–1213. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, et al: The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids. 3:e1862014. View Article : Google Scholar : PubMed/NCBI | |
Zhen S, Hua L, Takahashi Y, Narita S, Liu YH and Li Y: In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 450:1422–1426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhen S, Lu JJ, Wang LJ, Sun XM, Zhang JQ, Li X, Luo WJ and Zhao L: In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Transl Oncol. 9:498–504. 2016. View Article : Google Scholar : PubMed/NCBI | |
Das D, Smith N, Wang X and Morgan IM: The deacetylase SIRT1 regulates the replication properties of human papilloma-virus 16 E1 and E2. J Virol. 91:e00102-e001172017. View Article : Google Scholar | |
Merling R, Kuhns D, Sweeney C, Wu X, Burkett S, Chu J, Lee J, Koontz S, Di Pasquale G, Afione S, et al: Gene-edited pseudogene resurrection corrects p47 phox-deficient chronic granulomatous disease. Blood Adv. 1:270–278. 2016. View Article : Google Scholar | |
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S and Tessier-Lavigne M: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 533:125–129. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, et al: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13:653–658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T and Anderson DG: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 32:551–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gui H, Schriemer D, Cheng WW, Chauhan RK, Antiňolo G, Berrios C, Bleda M, Brooks AS, Brouwer RW, Burns AJ, et al: Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 18:482017. View Article : Google Scholar : PubMed/NCBI | |
Halim D, Wilson MP, Oliver D, Brosens E, Verheij JB, Han Y, Nanda V, Lyu Q, Doukas M, Stoop H, et al: Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci USA. 114:E2739–E2747. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, et al: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 539:384–389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, Fan D, Tang D and Sun X: The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Sci Re. 6:324632016. | |
Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO and Kan YW: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24:1526–1533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y and Liu DP: Both TALENs and CRISPR/Cas9 directly target the HBB IVS2 654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci Rep. 5:120652015. View Article : Google Scholar | |
Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R, Nakamura Y, Hughes JR, Hardison RC, Blobel GA, Li C and Weiss MJ: A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 22:987–990. 2016. View Article : Google Scholar : PubMed/NCBI | |
Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, et al: BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 527:192–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zhi H, Curtis BR, Rao S, Jobaliya C, Poncz M, French DL and Newman PJ: CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood. 127:675–680. 2016. View Article : Google Scholar : | |
Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, et al: Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther. 26:114–126. 2015. View Article : Google Scholar : | |
Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW and Kim JS: Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 17:213–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and McCarty N: CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol. 175:208–225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang N, Wang T, Xie G, Zhang Z, Li H, Yuan J, Sun Z and Chen J: DNA shuffling of uricase gene leads to a more ‘human like’ chimeric uricase with increased uricolytic activity. Int J Biol Macromol. 82:522–529. 2016. View Article : Google Scholar | |
Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, et al: CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med. 8:477–488. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hai T, Teng F, Guo R, Li W and Zhou Q: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24:372–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
Puschnik AS, Majzoub K, Ooi YS and Carette JE: A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol. 15:351–364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB and Cullen BR: Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 88:11965–11972. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Ye C, Liu J, Zhang D, Kimata JT and Zhou P: CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One. 9:e1159872014. View Article : Google Scholar : PubMed/NCBI | |
Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF and Gao X: Harnessing the clustered regularly inter-spaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 22:404–412. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ramanan V, Shlomai A, Cox DBT, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM and Bhatia SN: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep. 5:108332015. View Article : Google Scholar : PubMed/NCBI | |
Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, Schulze zur Wiesch J and Hauber J: CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep. 5:137342015. View Article : Google Scholar : PubMed/NCBI | |
Qi Xu Y, Luo Y, Yang J, Xie J, Deng Q, Su C, Wei N, Shi W, Xu DF, et al: Hepatitis B virus X protein stimulates proliferation, wound closure and inhibits apoptosis of HuH-7 cells via CDC42. Int J Mol Sci. 18:E5862017. View Article : Google Scholar | |
Ren Q, Li C, Yuan P, Cai C, Zhang L, Luo GG and Wei W: A dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci Rep. 5:88652015. View Article : Google Scholar : PubMed/NCBI | |
Yuen KS, Chan CP, Wong N-HM, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH and Jin DY: CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol. 96:626–636. 2015. View Article : Google Scholar | |
Wang J and Quake SR: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA. 111:13157–13162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kistler KE, Vosshall LB and Matthews BJ: Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11:51–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Xiao B, Jiang Y, Zhao Y, Li Z, Gao H, Ling Y, Wei J, Li S, Lu M, et al: Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. MBio. 5:e01414-142014. View Article : Google Scholar : PubMed/NCBI | |
Wagner JC, Platt RJ, Goldfless SJ, Zhang F and Niles JC: Efficient CRISPR/Cas9-mediated genome editing in P. falciparum. Nat Methods. 11:915–918. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A and Lopez-Rubio JJ: Genome editing in the human malaria parasite Plasmodium falciparum using the crisPr-cas9 system. Nat Biotechnol. 32:819–821. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burt A: Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 270:921–928. 2003. View Article : Google Scholar : PubMed/NCBI | |
Webber BL, Raghu S and Edwards OR: Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci USA. 112:10565–10567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, et al: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 34:78–83. 2016. View Article : Google Scholar : | |
Sánchez-Rivera FJ and Jacks T: Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 15:387–395. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N and Kaneda Y: CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 6:22361–22374. 2015. View Article : Google Scholar : PubMed/NCBI | |
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, Álamo-Quijada M, Benito R, Guerrero C, Hernández-Rivas JM and Sánchez-Martín M: The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget. 8:26027–26040. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, et al: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 6:73912015. View Article : Google Scholar : PubMed/NCBI | |
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, et al: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 516:423–427. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pathak S, McDermott MF and Savic S: Autoinflammatory diseases: Update on classification diagnosis and management. J Clin Pathol. 70:1–8. 2017. View Article : Google Scholar | |
Sá DC: Inflammasomes and dermatology. An Bras Dermatol. 91:566–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Bang SY, Lee HS and Bae SC: Update on the genetic architecture of rheumatoid arthritis. Nat Rev Rheumatol. 13:13–24. 2017. View Article : Google Scholar | |
Yang M, Zhang L, Stevens J and Gibson G: CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone. 69:118–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, Li N, Cao X and Wang J: RasGRP3 limits toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 5:46572014. View Article : Google Scholar : PubMed/NCBI | |
Jing W, Zhang X, Sun W, Hou X, Yao Z and Zhu Y: CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. Biomed Res Int. 2015.326042:2015. | |
Ott de Bruin LM, Volpi S and Musunuru K: Novel genome-editing tools to model and correct primary immunodeficiencies. Front Immunol. 6:2502015. View Article : Google Scholar : PubMed/NCBI | |
Cowan MJ, Neven B, Cavazanna-Calvo M, Fischer A and Puck J: Hematopoietic stem cell transplantation for severe combined immunodeficiency diseases. Biol Blood Marrow Transplant. 14(1 Suppl 1): S73–S75. 2008. View Article : Google Scholar | |
Deakin CT, Alexander IE and Kerridge I: Accepting risk in clinical research: Is the gene therapy field becoming too risk-averse. Mol Ther. 17:1842–1848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kohn DB and Kuo CY: New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing. J Allergy Clin Immunol. 139:726–732. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goodman MA, Moradi Manesh D, Malik P and Rothenberg ME: CRISPR/Cas9 in allergic and immunologic diseases. Expert Rev Clin Immunol. 13:5–9. 2017. View Article : Google Scholar | |
Wang M, Glass ZA and Xu Q: Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther. 24:144–150. 2017. View Article : Google Scholar | |
Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD and Townes TM: Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12:1668–1677. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flynn R, Grundmann A, Renz P, Hänseler W, James WS, Cowley SA and Moore MD: CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 43:838–848. e32015. View Article : Google Scholar : PubMed/NCBI | |
Wrona D, Siler U and Reichenbach J: CRISPR/Cas9-generated p47(phox)-deficient cell line for chronic granulomatous disease gene therapy vector development. Sci Rep. 7:441872017. View Article : Google Scholar | |
Yan Q, Zhang Q, Yang H, Zou Q, Tang C, Fan N and Lai L: Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen (Lond). 3:122014. | |
Fan Z, Li W, Lee SR, Meng Q, Shi B, Bunch TD, White KL, Kong IK and Wang Z: Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One. 9:e1097552014. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Wang Y, Yuan Y, Zhang W, Ren Z, Jin Y, Liu X, Xiong Q, Chen Q, Zhang M, et al: Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genomics. 42:437–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chu HW, Rios C, Huang C, Wesolowska-Andersen A, Burchard EG, O’Connor BP, Fingerlin TE, Nichols D, Reynolds SD and Seibold MA: CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther. 22:822–829. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuo CY, Hoban MD, Joglekar AV and Kohn DB: Site specific gene correction of defects in CD40 ligand using the Crispr/Cas9 genome editing platform. J Allergy Clin Immunol. 135:AB172015. View Article : Google Scholar | |
Cheong TC, Compagno M and Chiarle R: Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun. 7:109342016. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Sanchez IP, Guindon J, Ruiz M, Tejero ME, Hubbard G, Martinez-de-Villarreal LE, Barrera-Saldaña HA, Dick EJ Jr, Comuzzie AG and Schlabritz-Loutsevitch NE: The endocannabinoid system in the baboon (Papio spp.) as a complex framework for developmental pharmacology. Neurotoxicol Teratol. 58:23–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, et al: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 156:836–843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Zheng B, Shen B, Chen Y, Wang L, Wang J, Niu Y, Cui Y, Zhou J, Wang H, et al: CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Hum Mol Genet. 24:7255–7264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Huang LW, Snow KJ, Ablamunits V, Hasham MG, Young TH, Paulk AC, Richardson JE, Affourtit JP, Shalom-Barak T, et al: A mouse model of conditional lipodystrophy. Proc Natl Acad Sci USA. 104:16627–16632. 2007. View Article : Google Scholar : PubMed/NCBI | |
Croasdell A, Duffney PF, Kim N, Lacy SH, Sime PJ and Phipps RP: PPARγ and the innate immune system mediate the resolution of inflammation. PPAR Res. 2015.549691:2015. | |
Huang J, Guo X, Fan N, Song J, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yan Q, Yi X, et al: RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol. 193:1496–1503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Xiong M, Dong Y, Haberman A, Cao J, Liu H, Zhou W and Zhang SC: Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell. 18:817–826. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, et al: Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 72:1175–1184. 2015. View Article : Google Scholar | |
Wang L, Yi F, Fu L, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xu X, Yu Y, et al: CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell. 8:365–378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bhinge A, Namboori SC, Zhang X, VanDongen AMJ and Stanton LW: Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Reports. 8:856–869. 2017. View Article : Google Scholar : PubMed/NCBI | |
Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, et al: The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep. 20:2980–2991. 2017. View Article : Google Scholar : PubMed/NCBI | |
Page SC, Hamersky GR, Gallo RA, Rannals MD, Calcaterra NE, Campbell MN, Mayfield B, Briley A, Phan BN, Jaffe AE and Maher BJ: The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol Psychiatry. 23:304–315. 2018. View Article : Google Scholar | |
Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R and Olson EN: Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 351:400–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R and Olson EN: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 345:1184–1188. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, et al: In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 351:403–407. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, et al: In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 351:407–411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ackermann AM, Zhang J, Heller A, Briker A and Kaestner KH: High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Mol Metab. 6:236–244. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jarrett KE, Lee CM, Yeh YH, Hsu RH, Gupta R, Zhang M, Rodriguez PJ, Lee CS, Gillard BK, Bissig KD, et al: Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep. 7:446242017. View Article : Google Scholar : PubMed/NCBI | |
Mookherjee Yu W, Chaitankar S, Hiriyanna V, Kim S, Brooks JW, Ataeijannati M, Sun Y, Dong X, Li LT, et al: Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 8:147162017. View Article : Google Scholar : PubMed/NCBI |