1
|
Ruiz P, Kato T and Tzakis A: Current
status of transplantation of the small intestine. Transplantation.
83:1–6. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Koo J, Dawson DW, Dry S, French SW, Naini
BV and Wang HL: Allograft biopsy findings in patients with small
bowel transplantation. Clin Transplant. 30:1433–1439. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Libby P and Pober JS: Chronic rejection.
Immunity. 14:387–397. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN,
Dong C and Shen ZY: Hemeoxygenase-1-transduced bone marrow
mesenchymal stem cells in reducing acute rejection and improving
small bowel transplantation outcomes in rats. Stem Cell Res Ther.
7:1642016. View Article : Google Scholar
|
5
|
Wu B, Song HL, Yang Y, Yin ML, Zhang BY,
Cao Y, Dong C and Shen ZY: Improvement of liver transplantation
outcome by heme oxygenase-1-transduced bone marrow mesenchymal stem
cells in rats. Stem Cells Int. 2016:92350732016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Schu S, Nosov M, O'Flynn L, Shaw G, Treacy
O, Barry F, Murphy M, O'Brien T and Ritter T: Immunogenicity of
allogeneic mesenchymal stem cells. J Cell Mol Med. 16:2094–2103.
2012. View Article : Google Scholar
|
7
|
De Miguel MP, Fuentes-Julian S,
Blazquez-Martinez A, Pascual CY, Aller MA, Arias J and
Arnalich-Montiel F: Immunosuppressive properties of mesenchymal
stem cells: Advances and applications. Curr Mol Med. 12:574–591.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Barry FP and Murphy JM: Mesenchymal stem
cells: Clinical applications and biological characterization. Int J
Biochem Cell Biol. 36:568–584. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN,
Zheng WP, Dong C and Shen ZY: Reduction of acute rejection by bone
marrow mesenchymal stem cells during rat small bowel
transplantation. Plos One. 9:e1145282014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hodgkinson CP, Gomez JA, Mirotsou M and
Dzau VJ: Genetic engineering of mesenchymal stem cells and its
application in human disease therapy. Hum Gene Ther. 21:1513–1526.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Freyman T, Polin G, Osman H, Crary J, Lu
M, Cheng L, Palasis M and Wilensky RL: A quantitative, randomized
study evaluating three methods of mesenchymal stem cell delivery
following myocardial infarction. Eur Heart J. 27:1114–1122. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yamashita K, Ollinger R, McDaid J,
Sakahama H, Wang H, Tyagi S, Csizmadia E, Smith NR, Soares MP and
Bach FH: Heme oxygenase-1 is essential for and promotes tolerance
to transplanted organs. FASEB J. 20:776–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vanella L, Kim DH, Asprinio D, Peterson
SJ, Barbagallo I, Vanella A, Goldstein D, Ikehara S, Kappas A and
Abraham NG: HO-1 expression increases mesenchymal stem cell-derived
osteoblasts but decreases adipocyte lineage. Bone. 46:236–243.
2010. View Article : Google Scholar
|
14
|
Zeng B, Lin G, Ren X, Zhang Y and Chen H:
Overexpression of HO-1 on mesenchymal stem cells promotes
angiogenesis and improves myocardial function in infarcted
myocardium. J Biomed Sci. 17:802010. View Article : Google Scholar
|
15
|
Jenh CH, Cox MA, Cui L, Reich EP, Sullivan
L, Chen SC, Kinsley D, Qian S, Kim SH, Rosenblum S, et al: A
selective and potent CXCR3 antagonist SCH 546738 attenuates the
development of autoimmune diseases and delays graft rejection. BMC
Immunol. 13:22012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Agostini C, Calabrese F, Rea F, Facco M,
Tosoni A, Loy M, Binotto G, Valente M, Trentin L and Semenzato G:
CXCR3 and its ligand CXCL10 are expressed by inflammatory cells
infiltrating lung allografts and mediate chemotaxis of T cells at
sites of rejection. Am J Pathol. 158:1703–1711. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hancock WW, Wang L, Ye Q, Han R and Lee I:
Chemokines and their receptors as markers of allograft rejection
and targets for immunosuppression. Curr Opin Immunol. 15:479–486.
2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yin ML, Song HL, Yang Y, Zheng WP, Liu T
and Shen ZY: Effect of CXCR3/HO-1 genes modified bone marrow
mesenchymal stem cells on small bowel transplant rejection. World J
Gastroenterol. 23:4016–4038. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chu W, Li M, Li F, Hu R, Chen Z, Lin J and
Feng H: Immediate splenectomy down-regulates the MAPK-NF-κB
signaling pathway in rat brain after severe traumatic brain injury.
J Trauma Acute Care Surg. 74:1446–1453. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu H, Wang G, Li S, Zhang M, Li H and Wang
K: TNF-α- mediated-p38-dependent signaling pathway contributes to
myocyte apoptosis in rats subjected to surgical trauma. Cell
Physiol Biochem. 35:1454–1466. 2015. View Article : Google Scholar
|
21
|
Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X,
Deng H, Li W, Wang G and Li K: Inhibition of curcumin on influenza
A virus infection and influenzal pneumonia via oxidative stress,
TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol.
54:177–187. 2017. View Article : Google Scholar
|
22
|
Khan SI, Malhotra RK, Rani N, Sahu AK,
Tomar A, Garg S, Nag TC, Ray R, Ojha S, Arya DS and Bhatia J:
Febuxostat modulates MAPK/NF-κBp65/TNF-α signaling in cardiac
ischemia-reperfusion injury. Oxid Med Cell Longev.
2017:80958252017. View Article : Google Scholar
|
23
|
Cuadrado A and Nebreda AR: Mechanisms and
functions of p38 MAPK signalling. Biochem J. 429:403–417. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Gao JH, Guo LJ, Huang ZY, Rao JN and Tang
CW: Roles of cellular polyamines in mucosal healing in the
gastrointestinal tract. J Physiol Pharmacol. 64:681–693. 2013.
|
25
|
Liu T, Fu NN, Song HL, Wang YL, Wu BJ and
Shen ZY: Suppression of microRNA-203 improves survival of rat bone
marrow mesenchymal stem cells through enhancing PI3K-induced
cellular activation. IUBMB Life. 66:220–227. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao Y, Wu BJ, Zheng WP, Yin ML, Liu T and
Song HL: Effect of heme oxygenase-1 transduced bone marrow
mesenchymal stem cells on damaged intestinal epithelial cells in
vitro. Cell Biol Int. 41:726–738. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Ho MS, Mei SH and Stewart DJ: The
immunomodulatory and therapeutic effects of mesenchymal stromal
cells for acute lung Injury and sepsis. J Cell Physiol.
230:2606–2617. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen J, Li C and Chen L: The role of
microvesicles derived from mesenchymal stem cells in lung diseases.
Biomed Res Int. 2015:9858142015.PubMed/NCBI
|
30
|
English K: Mechanisms of mesenchymal
stromal cell immunomodulation. Immunol Cell Biol. 91:19–26. 2013.
View Article : Google Scholar
|
31
|
Le Blanc K and Mougiakakos D: Multipotent
mesenchymal stromal cells and the innate immune system. Nat Rev
Immunol. 12:383–396. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Singh AK, Arya RK, Trivedi AK, Sanyal S,
Baral R, Dormond O, Briscoe DM and Datta D: Chemokine receptor
trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12.
Cytokine Growth Factor Rev. 24:41–49. 2013. View Article : Google Scholar
|
33
|
Billottet C, Quemener C and Bikfalvi A:
CXCR3, a double-edged sword in tumor progression and angiogenesis.
Biochim Biophys Acta. 1836:287–295. 2013.PubMed/NCBI
|
34
|
Morikawa S, Mabuchi Y, Kubota Y, Nagai Y,
Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori
T, et al: Prospective identification, isolation, and systemic
transplantation of multipotent mesenchymal stem cells in murine
bone marrow. J Exp Med. 206:2483–2496. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Song K, Huang M, Shi Q, Du T and Cao Y:
Cultivation and identification of rat bone marrow-derived
mesenchymal stem cells. Mol Med Rep. 10:755–760. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng XK, Liu CX, Zhai YY, Li LL, Wang XL
and Feng WS: Protection effect of amentoflavone in selaginella
tamariscina against TNF-alpha-induced vascular injury of
endothelial cells. Yao Xue Xue Bao. 48:1503–1509. 2013.In Chinese.
PubMed/NCBI
|
37
|
Le Blanc K, Rasmusson I, Götherström C,
Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C and Ringdén
O: Mesenchymal stem cells inhibit the expression of CD25
(interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated
lymphocytes. Scand J Immunol. 60:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shipkova M and Wieland E: Surface markers
of lymphocyte activation and markers of cell proliferation. Clin
Chim Acta. 413:1338–1349. 2012. View Article : Google Scholar
|
39
|
Daniels TR, Delgado T, Rodriguez JA,
Helguera G and Penichet ML: The transferrin receptor part I:
Biology and targeting with cytotoxic antibodies for the treatment
of cancer. Clin Immunol. 121:144–158. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Elhaik Goldman S, Dotan S, Talias A, Lilo
A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, et al:
Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a
protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine
responses in mice. Int J Mol Med. 37:1127–1138. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xiang RL, Mei M, Su YC, Li L, Wang JY and
Wu LL: Visfatin protects rat pancreatic β-cells against
IFN-γ-Induced apoptosis through AMPK and ERK1/2 signaling pathways.
Biomed Environ Sci. 28:169–177. 2015.PubMed/NCBI
|
42
|
Duarte S, Shen XD, Fondevila C, Busuttil
RW and Coito AJ: Fibronectin-α4β1 interactions in hepatic cold
ischemia and reperfusion injury: Regulation of MMP-9 and MT1-MMP
via the p38 MAPK pathway. Am J Transplant. 12:2689–2699. 2012.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Peng S, Hang N, Liu W, Guo W, Jiang C,
Yang X, Xu Q and Sun Y: Andrographolide sulfonate ameliorates
lipopolysaccharide-induced acute lung injury in mice by
down-regulating MAPK and NF-κB pathways. Acta Pharm Sin B.
6:205–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lopez-Bergami P, Lau E and Ronai Z:
Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat
Rev Cancer. 10:65–76. 2010. View Article : Google Scholar :
|
45
|
Lau E and Ronai ZA: ATF2 - at the
crossroad of nuclear and cytosolic functions. J Cell Sci.
125:2815–2824. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Todd DJ, Lee AH and Glimcher LH: The
endoplasmic reticulum stress response in immunity and autoimmunity.
Nat Rev Immunol. 8:663–674. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li Y, Guo Y, Tang J, Jiang J and Chen Z:
New insights into the roles of CHOP-induced apoptosis in ER stress.
Acta Biochim Biophys Sin (Shanghai). 47:146–147. 2015. View Article : Google Scholar
|
48
|
He J, Wang C, Sun Y, Lu B, Cui J, Dong N,
Zhang M, Liu Y and Yu B: Exendin-4 protects bone marrow-derived
mesenchymal stem cells against oxygen/glucose and serum
deprivation-induced apoptosis through the activation of the
cAMP/PKA signaling pathway and the attenuation of ER stress. Int J
Mol Med. 37:889–900. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shi GX, Han J and Andres DA: Rin GTPase
couples nerve growth factor signaling to p38 and b-Raf/ERK pathways
to promote neuronal differentiation. J Biol Chem. 280:37599–37609.
2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wu J, Kubota J, Hirayama J, Nagai Y,
Nishina S, Yokoi T, Asaoka Y, Seo J, Shimizu N, Kajiho H, et al:
P38 mitogen-activated protein kinase controls a switch between
cardiomyocyte and neuronal commitment of murine embryonic stem
cells by activating myocyte enhancer factor 2C-dependent bone
morphogenetic protein 2 transcription. Stem Cells Dev.
19:1723–1734. 2010. View Article : Google Scholar : PubMed/NCBI
|