1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Singer EA, Gupta GN and Srinivasan R:
Targeted therapeutic strategies for the management of renal cell
carcinoma. Curr Opin Oncol. 24:284–290. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Négrier S: Duration of targeted therapy
for metastatic renal cell carcinoma: A review of current practices.
Oncology. 82:189–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gross-Goupil M, Massard C and Ravaud A:
Targeted therapies in metastatic renal cell carcinoma: Overview of
the past year. Curr Urol Rep. 13:16–23. 2012. View Article : Google Scholar
|
7
|
Coppin C, Kollmannsberger C, Le L,
Porzsolt F and Wilt TJ: Targeted therapy for advanced renal cell
cancer (RCC): A Cochrane systematic review of published randomised
trials. BJU Int. 108:1556–1563. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sonpavde G, Hutson TE and Rini BI:
Axitinib for renal cell carcinoma. Expert Opin Investig Drugs.
17:741–748. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kelly RJ and Rixe O: Axitinib (AG-013736).
Recent Results Cancer Res. 184:33–44. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Magesh S, Chen Y and Hu L: Small molecule
modulators of Keap1-Nrf2-ARE pathway as potential preventive and
therapeutic agents. Med Res Rev. 32:687–726. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yoo NJ, Kim HR, Kim YR, An CH and Lee SH:
Somatic mutations of the KEAP1 gene in common solid cancers.
Histopathology. 60:943–952. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ohta T, Iijima K, Miyamoto M, Nakahara I,
Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T,
et al: Loss of Keap1 function activates Nrf2 and provides
advantages for lung cancer cell growth. Cancer Res. 68:1303–1309.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sjöblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:
The consensus coding sequences of human breast and colorectal
cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wong TF, Yoshinaga K, Monma Y, Ito K,
Niikura H, Nagase S, Yamamoto M and Yaegashi N: Association of
keap1 and nrf2 genetic mutations and polymorphisms with
endometrioid endometrial adenocarcinoma survival. Int J Gynecol
Cancer. 21:1428–1435. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Singh A, Misra V, Thimmulappa RK, Lee H,
Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E,
et al: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung
cancer. PLoS Med. 3:e4202006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shibata T, Kokubu A, Gotoh M, Ojima H,
Ohta T, Yamamoto M and Hirohashi S: Genetic alteration of Keap1
confers constitutive Nrf2 activation and resistance to chemotherapy
in gallbladder cancer. Gastroenterology. 135:1358–1368. 1368.e1–e4.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lister A, Nedjadi T, Kitteringham NR,
Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A,
Neoptolemos JP, et al: Nrf2 is overexpressed in pancreatic cancer:
Implications for cell proliferation and therapy. Mol Cancer.
10:372011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du
Y, Shen J, Chen CT, Huo L, Hsu MC, et al: KEAP1 E3 ligase-mediated
downregulation of NF-kappaB signaling by targeting IKKbeta. Mol
Cell. 36:131–140. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK,
Wei Y, Sun HL, Li LY, Ping B, Huang WC, et al: IKK beta suppression
of TSC1 links inflammation and tumor angiogenesis via the mTOR
pathway. Cell. 130:440–455. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Niture SK and Jaiswal AK: Inhibitor of
Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate
mutase 5 and controls cellular apoptosis. J Biol Chem.
286:44542–44556. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Niture SK and Jaiswal AK: INrf2 (Keap1)
targets Bcl-2 degradation and controls cellular apoptosis. Cell
Death Differ. 18:439–451. 2011. View Article : Google Scholar
|
22
|
Kobayashi A, Kang MI, Okawa H, Ohtsuji M,
Zenke Y, Chiba T, Igarashi K and Yamamoto M: Oxidative stress
sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to
regulate proteasomal degradation of Nrf2. Mol Cell Biol.
24:7130–7139. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kansanen E, Jyrkkänen HK and Levonen AL:
Activation of stress signaling pathways by electrophilic oxidized
and nitrated lipids. Free Radic Biol Med. 52:973–982. 2012.
View Article : Google Scholar
|
24
|
Galloway DC, Blake DG, Shepherd AG and
McLellan LI: Regulation of human gamma-glutamylcysteine synthetase:
Co-ordinate induction of the catalytic and regulatory subunits in
HepG2 cells. Biochem J. 328:99–104. 1997. View Article : Google Scholar
|
25
|
Traver RD, Horikoshi T, Danenberg KD,
Stadlbauer TH, Danenberg PV, Ross D and Gibson NW: NAD(P)H:quinone
oxidoreductase gene expression in human colon carcinoma cells:
Characterization of a mutation which modulates DT-diaphorase
activity and mitomycin sensitivity. Cancer Res. 52:797–802.
1992.PubMed/NCBI
|
26
|
Meijerman I, Beijnen JH and Schellens JH:
Combined action and regulation of phase II enzymes and multidrug
resistance proteins in multidrug resistance in cancer. Cancer Treat
Rev. 34:505–520. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Mizunoe Y, Kobayashi M, Sudo Y, Watanabe
S, Yasukawa H, Natori D, Hoshino A, Negishi A, Okita N, Komatsu M
and Higami Y: Trehalose protects against oxidative stress by
regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol.
15:115–124. 2018. View Article : Google Scholar
|
29
|
Frank R, Scheffler M, Merkelbach-Bruse S,
Ihle MA, Kron A, Rauer M, Ueckeroth F, König K, Michels S, Fischer
R, et al: Clinical and pathological characteristics of KEAP1- and
NFE2L2-mutated non-small cell lung carcinoma (NSCLC). Clin Cancer
Res. 24:3087–3096. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu B, Yang S, Sun H, Sun T, Ji F, Wang Y,
Xu L and Zhou D: Keap1 inhibits metastatic properties of NSCLC
cells by stabilizing architectures of F-actin and focal adhesions.
Mol Cancer Res. 16:508–516. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hanada N, Takahata T, Zhou Q, Ye X, Sun R,
Itoh J, Ishiguro A, Kijima H, Mimura J, Itoh K, et al: Methylation
of the KEAP1 gene promoter region in human colorectal cancer. BMC
Cancer. 12:662012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hartikainen JM, Tengström M, Winqvist R,
Jukkola-Vuorinen A, Pylkäs K, Kosma VM, Soini Y and Mannermaa A:
KEAP1 genetic polymorphisms associate with breast cancer risk and
survival outcomes. Clin Cancer Res. 21:1591–1601. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Barbano R, Muscarella LA, Pasculli B,
Valori VM, Fontana A, Coco M, la Torre A, Balsamo T, Poeta ML,
Marangi GF, et al: Aberrant Keap1 methylation in breast cancer and
association with clinicopathological features. Epigenetics.
8:105–112. 2013. View Article : Google Scholar :
|
34
|
Klapproth E, Dickreuter E, Zakrzewski F,
Seifert M, Petzold A, Dahl A, Schröck E, Klink B and Cordes N:
Whole exome sequencing identifies mTOR and KEAP1 as potential
targets for radiosensitization of HNSCC cells refractory to EGFR
and β1 integrin inhibition. Oncotarget. 9:18099–18114. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Solis LM, Behrens C, Dong W, Suraokar M,
Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN,
et al: Nrf2 and Keap1 abnormalities in non-small cell lung
carcinoma and association with clinicopathologic features. Clin
Cancer Res. 16:3743–3753. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ma YH, Wang SY, Ren YP, Li J, Guo TJ, Lu W
and Zhou TY: Antitumor effect of axitinib combined with dopamine
and PK-PD modeling in the treatment of human breast cancer
xenograft. Acta Pharmacol Sin. 40:243–256. 2019. View Article : Google Scholar
|
37
|
Bondarenko IM, Ingrosso A, Bycott P, Kim S
and Cebotaru CL: Phase II study of axitinib with doublet
chemotherapy in patients with advanced squamous non-small-cell lung
cancer. BMC Cancer. 15:3392015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ioka T, Okusaka T, Ohkawa S, Boku N,
Sawaki A, Fujii Y, Kamei Y, Takahashi S, Namazu K, Umeyama Y, et
al: Efficacy and safety of axitinib in combination with gemcitabine
in advanced pancreatic cancer: Subgroup analyses by region,
including Japan, from the global randomized Phase III trial. Jpn J
Clin Oncol. 45:439–448. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hui EP, Ma BBY, Loong HHF, Mo F, Li L,
King AD, Wang K, Ahuja AT, Chan CML, Hui CWC, et al: Efficacy,
safety, and pharmacokinetics of axitinib in nasopharyngeal
carcinoma: A preclinical and phase II correlative study. Clin
Cancer Res. 24:1030–1037. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jeong Y, Hoang NT, Lovejoy A, Stehr H,
Newman AM, Gentles AJ, Kong W, Truong D, Martin S, Chaudhuri A, et
al: Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell
carcinoma development and radiotherapy response prediction. Cancer
Discovery. 7:86–101. 2017. View Article : Google Scholar :
|
41
|
Kim HR, Kim S, Kim EJ, Park JH, Yang SH,
Jeong ET, Park C, Youn MJ, So HS and Park R: Suppression of
Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung
cancer A549 cells toward cisplatin. Lung Cancer. 60:47–56. 2008.
View Article : Google Scholar
|
42
|
Kim SK, Yang JW, Kim MR, Roh SH, Kim HG,
Lee KY, Jeong HG and Kang KW: Increased expression of
Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant
breast cancer cells. Free Radic Biol Med. 45:537–546. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Okawa H, Motohashi H, Kobayashi A,
Aburatani H, Kensler TW and Yamamoto M: Hepatocyte-specific
deletion of the keap1 gene activates Nrf2 and confers potent
resistance against acute drug toxicity. Biochem Biophys Res Commun.
339:79–88. 2006. View Article : Google Scholar
|
44
|
Homma S, Ishii Y, Morishima Y, Yamadori T,
Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N,
et al: Nrf2 enhances cell proliferation and resistance to
anticancer drugs in human lung cancer. Clin Cancer Res.
15:3423–3432. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vargas MR and Johnson JA: The Nrf2-ARE
cytoprotective pathway in astrocytes. Expert Rev Mol Med.
11:e172009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Taguchi K, Motohashi H and Yamamoto M:
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response
and cancer evolution. Genes Cells. 16:123–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y,
Li Y, Li Y, Luo L, Hayes JD, et al: RXRα inhibits the NRF2-ARE
signaling pathway through a direct interaction with the Neh7 domain
of NRF2. Cancer Res. 73:3097–3108. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
McMahon M, Thomas N, Itoh K, Yamamoto M
and Hayes JD: Redox-regulated turnover of Nrf2 is determined by at
least two separate protein domains, the redox-sensitive Neh2 degron
and the redox-insensitive Neh6 degron. J Biol Chem.
279:31556–31567. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Rachakonda G, Xiong Y, Sekhar KR, Stamer
SL, Liebler DC and Freeman ML: Covalent modification at Cys151
dissociates the electrophile sensor Keap1 from the ubiquitin ligase
CUL3. Chem Res Toxicol. 21:705–710. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Krajka-Kuźniak V, Paluszczak J and
Baer-Dubowska W: The Nrf2-ARE signaling pathway: An update on its
regulation and possible role in cancer prevention and treatment.
Pharmacol Rep. 69:393–402. 2017. View Article : Google Scholar
|
51
|
Moon EJ and Giaccia A: Dual roles of NRF2
in tumor prevention and progression: Possible implications in
cancer treatment. Free Radic Biol Med. 79:292–299. 2015. View Article : Google Scholar
|
52
|
Itoh K, Chiba T, Takahashi S, Ishii T,
Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, et
al: An Nrf2/small Maf heterodimer mediates the induction of phase
II detoxifying enzyme genes through antioxidant response elements.
Biochem Biophys Res Commun. 236:313–322. 1997. View Article : Google Scholar : PubMed/NCBI
|
53
|
Xu C, Huang MT, Shen G, Yuan X, Lin W,
Khor TO, Conney AH and Kong AN: Inhibition of 7,12-dimethylbenz(a)
anthracene-induced skin tumorigenesis in C57BL/6 mice by
sulforaphane is mediated by nuclear factor E2-related factor 2.
Cancer Res. 66:8293–8296. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
auf dem Keller U, Huber M, Beyer TA, Kümin
A, Siemes C, Braun S, Bugnon P, Mitropoulos V, Johnson DA, Johnson
JA, et al: Nrf transcription factors in keratinocytes are essential
for skin tumor prevention but not for wound healing. Mol Cell Biol.
26:3773–3784. 2006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Stacy DR, Ely K, Massion PP, Yarbrough WG,
Hallahan DE, Sekhar KR and Freeman ML: Increased expression of
nuclear factor E2 p45-related factor 2 (NRF2) in head and neck
squamous cell carcinomas. Head Neck. 28:813–818. 2006. View Article : Google Scholar : PubMed/NCBI
|
56
|
Hu XF, Yao J, Gao SG, Wang XS, Peng XQ,
Yang YT and Feng XS: Nrf2 overexpression predicts prognosis and
5-FU resistance in gastric cancer. Asian Pac J Cancer Prev.
14:5231–5235. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lau A, Villeneuve NF, Sun Z, Wong PK and
Zhang DD: Dual roles of Nrf2 in cancer. Pharmacol Res. 58:262–270.
2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Lo HW and Ali-Osman F: Genetic
polymorphism and function of glutathione S-transferases in tumor
drug resistance. Curr Opin Pharmacol. 7:367–374. 2007. View Article : Google Scholar : PubMed/NCBI
|
59
|
Fiorillo M, Sotgia F, Sisci D, Cappello AR
and Lisanti MP: Mitochondrial 'power' drives tamoxifen resistance:
NQO1 and GCLC are new therapeutic targets in breast cancer.
Oncotarget. 8:20309–20327. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Tanaka S, Akaike T, Fang J, Beppu T, Ogawa
M, Tamura F, Miyamoto Y and Maeda H: Antiapoptotic effect of haem
oxygenase-1 induced by nitric oxide in experimental solid tumour.
Br J Cancer. 88:902–909. 2003. View Article : Google Scholar : PubMed/NCBI
|
61
|
Oh ET and Park HJ: Implications of NQO1 in
cancer therapy. BMB Rep. 48:609–617. 2015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Piscazzi A, Costantino E, Maddalena F,
Natalicchio MI, Gerardi AM, Antonetti R, Cignarelli M and
Landriscina M: Activation of the RAS/RAF/ERK signaling pathway
contributes to resistance to sunitinib in thyroid carcinoma cell
lines. J Clin Endocrinol Metab. 97:E898–E906. 2012. View Article : Google Scholar : PubMed/NCBI
|
63
|
Nazarian R, Shi H, Wang Q, Kong X, Koya
RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, et al: Melanomas
acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS
upregulation. Nature. 468:973–977. 2010. View Article : Google Scholar : PubMed/NCBI
|
64
|
Johannessen CM, Boehm JS, Kim SY, Thomas
SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP,
Barretina J, et al: COT drives resistance to RAF inhibition through
MAP kinase pathway reactivation. Nature. 468:968–972. 2010.
View Article : Google Scholar : PubMed/NCBI
|