1
|
Sakurai T: The role of orexin in motivated
behaviours. Nat Rev Neurosci. 15:719–731. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sakurai T, Moriguchi T, Furuya K, Kajiwara
N, Nakamura T, Yanagisawa M and Goto K: Structure and function of
human prepro-orexin gene. J Biol Chem. 274:17771–17776. 1999.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Moriguchi T, Sakurai T, Takahashi S, Goto
K and Yamamoto M: The human prepro-orexin gene regulatory region
that activates gene expression in the lateral region and represses
it in the medial regions of the hypothalamus. J Biol Chem.
277:16985–16992. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Amiot C, Brischoux F, Colard C, La Roche
A, Fellmann D and Risold PY: Hypocretin/orexin-containing neurons
are produced in one sharp peak in the developing ventral
diencephalon. Eur J Neurosci. 22:531–534. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tanaka S: Transcriptional regulation of
the hypocretin/orexin gene. Vitam Horm. 89:75–90. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ogawa Y, Kanda T, Vogt K and Yanagisawa M:
Anatomical and electrophysiological development of the hypothalamic
orexin neurons from embryos to neonates. J Comp Neurol.
525:3809–3820. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zahr SK, Yang G, Kazan H, Borrett MJ,
Yuzwa SA, Voronova A, Kaplan DR and Miller FD: A translational
repression complex in developing mammalian neural stem cells that
regulates neuronal specification. Neuron. 97:520–537 e6. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Tanaka S, Kodama T, Nonaka T, Toyoda H,
Arai M, Fukazawa M, Honda Y, Honda M and Mignot E: Transcriptional
regulation of the hypocretin/orexin gene by NR6A1. Biochem Biophys
Res Commun. 403:178–183. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimogori T, Lee DA, Miranda-Angulo A,
Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H,
Avetisyan M, et al: A genomic atlas of mouse hypothalamic
development. Nature Neurosci. 13:767–775. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Silva JP, von Meyenn F, Howell J, Thorens
B, Wolfrum C and Stoffel M: Regulation of adaptive behaviour during
fasting by hypothalamic Foxa2. Nature. 462:646–650. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Dalal J, Roh JH, Maloney SE, Akuffo A,
Shah S, Yuan H, Wamsley B, Jones WB, de Guzman Strong C, Gray PA,
et al: Translational profiling of hypocretin neurons identifies
candidate molecules for sleep regulation. Genes Dev. 27:565–578.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Honda M, Eriksson KS, Zhang S, Tanaka S,
Lin L, Salehi A, Hesla PE, Maehlen J, Gaus SE, Yanagisawa M, et al:
IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS
One. 4:e42542009. View Article : Google Scholar : PubMed/NCBI
|
13
|
De La Herrán-Arita AK, Zomosa-Signoret VC,
Millán-Aldaco DA, Palomero-Rivero M, Guerra-Crespo M, Drucker-Colín
R and Vidaltamayo R: Aspects of the narcolepsy-cataplexy syndrome
in O/E3-null mutant mice. Neuroscience. 183:134–143. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sánchez-García A, Cabral-Pacheco GA,
Zomosa-Signoret VC, Ortiz-López R, Camacho A, Tabera-Tarello PM,
Garnica-López JA and Vidaltamayo R: Modular organization of a
hypocretin gene minimal promoter. Mol Med Rep. 17:2263–2270.
2018.
|
15
|
Spengler D, Villalba M, Hoffmann A,
Pantaloni C, Houssami S, Bockaert J and Journot L: Regulation of
apoptosis and cell cycle arrest by Zac1, a novel zinc finger
protein expressed in the pituitary gland and the brain. EMBO J.
16:2814–2825. 1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kas K, Voz ML, Hensen K, Meyen E and Van
de Ven WJ: Transcriptional activation capacity of the novel PLAG
family of zinc finger proteins. J Biol Chem. 273:23026–23032. 1998.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kamiya M, Judson H, Okazaki Y, Kusakabe M,
Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, et
al: The cell cycle control gene ZAC/PLAGL1 is imprinted-a strong
candidate gene for transient neonatal diabetes. Hum Mol Genet.
9:453–460. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Varrault A, Gueydan C, Delalbre A,
Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le
Digarcher A, et al: Zac1 regulates an imprinted gene network
critically involved in the control of embryonic growth. Dev Cell.
11:711–722. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Varrault A, Dantec C, Le Digarcher A,
Chotard L, Bilanges B, Parrinello H, Dubois E, Rialle S, Severac D,
Bouschet T and Journot L: Identification of Plagl1/Zac1 binding
sites and target genes establishes its role in the regulation of
extracellular matrix genes and the imprinted gene network. Nucleic
Acids Res. 45:10466–10480. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US); Washington, DC: 2011
|
21
|
Terao A, Wisor JP, Peyron C,
Apte-Deshpande A, Wurts SW, Edgar DM and Kilduff TS: Gene
expression in the rat brain during sleep deprivation and recovery
sleep: An Affymetrix GeneChip study. Neuroscience. 137:593–605.
2006. View Article : Google Scholar
|
22
|
Dignam JD, Lebovitz RM and Roeder RG:
Accurate transcription initiation by RNA polymerase II in a soluble
extract from isolated mammalian nuclei. Nucleic Acids Res.
11:1475–1489. 1983. View Article : Google Scholar : PubMed/NCBI
|
23
|
Takizawa N, Tanaka S, Oe S, Koike T,
Matsuda T and Yamada H: Hypothalamo-hypophysial system in rats with
autotransplantation of the adrenal cortex. Mol Med Rep.
15:3215–3221. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Lein ES, Hawrylycz MJ, Ao N, Ayres M,
Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ,
et al: Genome-wide atlas of gene expression in the adult mouse
brain. Nature. 445:168–176. 2007. View Article : Google Scholar
|
26
|
Varrault A, Ciani E, Apiou F, Bilanges B,
Hoffmann A, Pantaloni C, Bockaert J, Spengler D and Journot L: hZAC
encodes a zinc finger protein with antiproliferative properties and
maps to a chromosomal region frequently lost in cancer. Proc Natl
Acad Sci USA. 95:8835–8840. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chou TC, Lee CE, Lu J, Elmquist JK, Hara
J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M,
et al: Orexin (hypocretin) neurons contain dynorphin. J Neurosci.
21:RC1682001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Reti IM, Reddy R, Worley PF and Baraban
JM: Selective expression of Narp, a secreted neuronal pentraxin, in
orexin neurons. J Neurochem. 82:1561–1565. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tsuneki H, Wada T and Sasaoka T: Role of
orexin in the central regulation of glucose and energy homeostasis.
Endocr J. 59:365–374. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nattie E and Li A: Respiration and
autonomic regulation and orexin. Prog Brain Res. 198:25–46. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yamanaka A, Beuckmann CT, Willie JT, Hara
J, Tsujino N, Mieda M, Tominaga M, Yagami Ki, Sugiyama F, Goto K,
et al: Hypothalamic orexin neurons regulate arousal according to
energy balance in mice. Neuron. 38:701–713. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Burdakov D, Jensen LT, Alexopoulos H,
Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L and
Verkhratsky A: Tandem-pore K+ channels mediate
inhibition of orexin neurons by glucose. Neuron. 50:711–722. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
González JA, Jensen LT, Doyle SE,
Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA and Burdakov D:
Deletion of TASK1 and TASK3 channels disrupts intrinsic
excitability but does not abolish glucose or pH responses of
orexin/hypocretin neurons. Eur J Neurosci. 30:57–64. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Valdivia S, Patrone A, Reynaldo M and
Perello M: Acute high fat diet consumption activates the mesolimbic
circuit and requires orexin signaling in a mouse model. PLoS One.
9:e874782014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sakurai T: The neural circuit of orexin
(hypocretin): Maintaining sleep and wakefulness. Nat Rev Neurosci.
8:171–181. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fujiki N, Yoshida Y, Ripley B, Honda K,
Mignot E and Nishino S: Changes in CSF hypocretin-1 (orexin A)
levels in rats across 24 hours and in response to food deprivation.
Neuroreport. 12:993–997. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee MG, Hassani OK and Jones BE: Discharge
of identified orexin/hypocretin neurons across the sleep-waking
cycle. J Neurosci. 25:6716–6720. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yoshida Y, Fujiki N, Nakajima T, Ripley B,
Matsumura H, Yoneda H, Mignot E and Nishino S: Fluctuation of
extracellular hypocretin-1 (orexin A) levels in the rat in relation
to the light-dark cycle and sleep-wake activities. Eur J Neurosci.
14:1075–1081. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pedrazzoli M, D'Almeida V, Martins PJ,
Machado RB, Ling L, Nishino S, Tufik S and Mignot E: Increased
hypocretin-1 levels in cerebrospinal fluid after REM sleep
deprivation. Brain Res. 995:1–6. 2004. View Article : Google Scholar
|
40
|
Wu MF, John J, Maidment N, Lam HA and
Siegel JM: Hypocretin release in normal and narcoleptic dogs after
food and sleep deprivation, eating, and movement. Am J Physiol
Regul Integr Comp Physiol. 283:R1079–R1086. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Allard JS, Tizabi Y, Shaffery JP and
Manaye K: Effects of rapid eye movement sleep deprivation on
hypocretin neurons in the hypothalamus of a rat model of
depression. Neuropeptides. 41:329–337. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Modirrousta M, Mainville L and Jones BE:
Orexin and MCH neurons express c-Fos differently after sleep
deprivation vs. recovery and bear different adrenergic receptors.
Eur J Neurosci. 21:2807–2816. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Martins PJ, Marques MS, Tufik S and
D'Almeida V: Orexin activation precedes increased NPY expression,
hyperphagia, and metabolic changes in response to sleep
deprivation. Am J Physiol Endocrinol Metab. 298:E726–E734. 2010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Holmquist GP and Ashley T: Chromosome
organization and chromatin modification: Influence on genome
function and evolution. Cytogenet Genome Res. 114:96–125. 2006.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Sadoni N, Langer S, Fauth C, Bernardi G,
Cremer T, Turner BM and Zink D: Nuclear organization of mammalian
genomes. Polar chromosome territories build up functionally
distinct higher order compartments. J Cell Biol. 146:1211–1226.
1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Di Tomaso MV, Liddle P, Lafon-Hughes L,
Reyes-Ábalos A and Folle G: Chromatin damage patterns shift
according to Eu/Heterochromatin replication. The mechanisms of DNA
replication. D S: InTech. 2013.
|
47
|
Hayakawa K, Hirosawa M, Tabei Y, Arai D,
Tanaka S, Murakami N, Yagi S and Shiota K: Epigenetic switching by
the metabolism-sensing factors in the generation of orexin neurons
from mouse embryonic stem cells. J Biol Chem. 288:17099–17110.
2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hayakawa K, Sakamoto Y, Kanie O, Ohtake A,
Daikoku S, Ito Y and Shiota K: Reactivation of
hyperglycemia-induced hypocretin (HCRT) gene silencing by
N-acetyl-d-mannosamine in the orexin neurons derived from human iPS
cells. Epigenetics. 12:764–778. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hoffmann A, Ciani E, Boeckardt J, Holsboer
F, Journot L and Spengler D: Transcriptional activities of the zinc
finger protein Zac are differentially controlled by DNA binding.
Mol Cell Biol. 23:988–1003. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yuasa S, Onizuka T, Shimoji K, Ohno Y,
Kageyama T, Yoon SH, Egashira T, Seki T, Hashimoto H, Nishiyama T,
et al: Zac1 is an essential transcription factor for cardiac
morphogenesis. Circ Res. 106:1083–1091. 2010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xu Y, Tamamaki N, Noda T, Kimura K,
Itokazu Y, Matsumoto N, Dezawa M and Ide C: Neurogenesis in the
ependymal layer of the adult rat 3rd ventricle. Exp Neurol.
192:251–264. 2005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Broberger C, De Lecea L, Sutcliffe JG and
Hökfelt T: Hypocretin/orexin- and melanin-concentrating
hormone-expressing cells form distinct populations in the rodent
lateral hypothalamus: Relationship to the neuropeptide Y and agouti
gene-related protein systems. J Comp Neurol. 402:460–474. 1998.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Elias CF, Saper CB, Maratos-Flier E,
Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh
GS, et al: Chemically defined projections linking the mediobasal
hypothalamus and the lateral hypothalamic area. J Comp Neurol.
402:442–459. 1998. View Article : Google Scholar : PubMed/NCBI
|
54
|
Matsuki T, Nomiyama M, Takahira H,
Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler
B, Yanagisawa M and Sakurai T: Selective loss of GABA(B) receptors
in orexin-producing neurons results in disrupted sleep/wakefulness
architecture. Proc Natl Acad Sci USA. 106:4459–4464. 2009.
View Article : Google Scholar : PubMed/NCBI
|