1
|
Guttman-Yassky E, Hanifin JM, Boguniewicz
M, Wollenberg A, Bissonnette R, Purohit V, Kilty I, Tallman AM and
Zielinski MA: The role of phosphodiesterase 4 in the
pathophysiology of atopic dermatitis and the perspective for its
inhibition. Exp Dermatol. 28:3–10. 2019.
|
2
|
Yu JH, Jin M, Choi YA, Jeong NH, Park JS,
Shin TY and Kim SH: Suppressive effect of an aqueous extract of
Diospyros kaki calyx on dust mite
extract/2,4-dinitrochlorobenzene-induced atopic dermatitis-like
skin lesions. Int J Mol Med. 40:505–511. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Löwa A, Jevtić M, Gorreja F and Hedtrich
S: Alternatives to animal testing in basic and preclinical research
of atopic dermatitis. Exp Dermatol. 27:476–483. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bieber T: Atopic dermatitis. Ann Dermatol.
22:125–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Plötz SG and Ring J: What's new in atopic
eczema? Expert Opin Emerg Drugs. 15:249–267. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Landheer J, Giovannone B, Mattson JD,
Tjabringa S, Bruijnzeel-Koomen CA, McClanahan T, de Waal Malefyt R,
Knol E and Hijnen D: Epicutaneous application of house dust mite
induces thymic stromal lymphopoietin in nonlesional skin of
patients with atopic dermatitis. J Allergy Clin Immunol.
132:1252–1254. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Luo Y, Zhou B, Zhao M, Tang J and Lu Q:
Promoter demethylation contributes to TSLP overexpression in skin
lesions of patients with atopic dermatitis. Clin Exp Dermatol.
39:48–53. 2014. View Article : Google Scholar
|
8
|
Zhu Y, Pan WH, Wang XR, Liu Y, Chen M, Xu
XG, Liao WQ and Hu JH: Tryptase and protease-activated receptor-2
stimulate scratching behavior in a murine model of
ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol.
28:507–512. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schneider C, Döcke WD, Zollner TM and Röse
L: Chronic mouse model of TMA-induced contact hypersensitivity. J
Invest Dermatol. 129:899–907. 2009. View Article : Google Scholar
|
10
|
Han NR, Oh HA, Nam SY, Moon PD, Kim DW,
Kim HM and Jeong HJ: TSLP induces mast cell development and
aggravates allergic reactions through the activation of MDM2 and
STAT6. J Invest Dermatol. 134:2521–2530. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Han NR, Moon PD, Yoou MS, Chang TS, Kim HM
and Jeong HJ: Effect of massage therapy by VOSKIN 125+ painkiller®
on inflammatory skin lesions. Dermatol Ther. 31:e126282018.
View Article : Google Scholar
|
12
|
Gauchat JF, Henchoz S, Mazzei G, Aubry JP,
Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J,
et al: Induction of human IgE synthesis in B cells by mast cells
and basophils. Nature. 365:340–343. 1993. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moon PD, Choi IH and Kim HM: Berberine
inhibits the production of thymic stromal lymphopoietin by the
blockade of caspase-1/NF-κB pathway in mast cells. Int
Immunopharmacol. 11:1954–1959. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schneider KS, Groß CJ, Dreier RF, Saller
BS, Mishra R, Gorka O, Heilig R, Meunier E, Dick MS, Ćiković T, et
al: The inflammasome drives GSDMD-independent secondary pyroptosis
and IL-1 release in the absence of caspase-1 protease activity.
Cell Rep. 21:3846–3859. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Han NR, Moon PD, Kim NR, Kim HY, Jeong HJ
and Kim HM: Schisandra chinensis and its main constituent
schizandrin attenuate allergic reactions by down-regulating
caspase-1 in ovalbumin-sensitized mice. Am J Chin Med. 45:159–172.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guo L, Kong Q, Dong Z, Dong W, Fu X, Su L
and Tan X: NLRC3 promotes host resistance against Pseudomonas
aeruginosa-induced keratitis by promoting the degradation of IRAK1.
Int J Mol Med. 40:898–906. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Błażejewski AJ, Thiemann S, Schenk A, Pils
MC, Gálvez EJC, Roy U, Heise U, de Zoete MR, Flavell RA and Strowig
T: Microbiota normalization reveals that canonical caspase-1
activation exacerbates chemically induced intestinal inflammation.
Cell Rep. 19:2319–2330. 2017. View Article : Google Scholar
|
18
|
Moon PD and Kim HM: Thymic stromal
lymphopoietin is expressed and produced by caspase-1/NF-κB pathway
in mast cells. Cytokine. 54:239–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Thakur R, Sharma A, Lingaraju MC, Begum J
and Kumar D, Mathesh K, Kumar P, Singh TU and Kumar D: Ameliorative
effect of ursolic acid on renal fibrosis in adenine-induced chronic
kidney disease in rats. Biomed Pharmacother. 101:972–980. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bhat RA, Lingaraju MC, Pathak NN, Kalra J,
Kumar D, Kumar D and Tandan SK: Effect of ursolic acid in
attenuating chronic constriction injury-induced neuropathic pain in
rats. Fundam Clin Pharmacol. 30:517–528. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lewinska A, Adamczyk-Grochala J,
Kwasniewicz E, Deregowska A and Wnuk M: Ursolic acid-mediated
changes in glycolytic pathway promote cytotoxic autophagy and
apoptosis in phenotypically different breast cancer cells.
Apoptosis. 22:800–815. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gan D, Zhang W, Huang C, Chen J, He W,
Wang A, Li B and Zhu X: Ursolic acid ameliorates CCl4-induced liver
fibrosis through the NOXs/ROS pathway. J Cell Physiol.
233:6799–6813. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ben Trivedi A, Kitabatake N and Doi E:
Toxicity of dimethyl sulfoxide as a solvent in bioassay system with
HeLa cells evaluated colorimetrically with
3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyl-tetrazolium bromide.
Agric Biol Chem. 54:2961–2966. 1990.PubMed/NCBI
|
24
|
Han NR, Moon PD, Ryu KJ, Kim NR, Kim HM
and Jeong HJ: Inhibitory effect of naringenin via IL-13 level
regulation on thymic stromal lymphopoietin-induced inflammatory
reactions. Clin Exp Pharmacol Physiol. 45:362–369. 2018. View Article : Google Scholar
|
25
|
Han NR, Moon PD, Yoo MS, Ryu KJ, Kim HM
and Jeong HJ: Regulatory effects of chrysophanol, a bioactive
compound of AST201701 in a mouse model of
2,4-dinitrofluorobenzene-induced atopic dermatitis. Int
Immunopharmacol. 62:220–226. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Han NR, Moon PD, Kim HM and Jeong HJ:
Cordycepin ameliorates skin inflammation in a DNFB-challenged
murine model of atopic dermatitis. Immunopharmacol Immunotoxicol.
40:401–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Moon PD and Kim HM: Anti-inflammatory
effect of phenethyl isothiocyanate, an active ingredient of
Raphanus sativus Linne. Food Chem. 131:1332–1339. 2012. View Article : Google Scholar
|
28
|
Moon PD, Han NR, Lee JS, Kim HY, Hong S,
Kim HJ, Yoo MS, Kim HM and Jeong HJ: β-eudesmol inhibits thymic
stromal lymphopoietin through blockade of caspase-1/NF-κB signal
cascade in allergic rhinitis murine model. Chem Biol Interact.
294:101–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Han NR, Moon PD, Ryu KJ, Jang JB, Kim HM
and Jeong HJ: β-eudesmol suppresses allergic reactions via
inhibiting mast cell degranulation. Clin Exp Pharmacol Physiol.
44:257–265. 2017. View Article : Google Scholar
|
30
|
Wu Z, Wang Y, Meng X, Wang X, Li Z, Qian
S, Wei Y, Shu L, Ding Y, Wang P and Peng Y: Total C-21 steroidal
glycosides, isolated from the root tuber of Cynanchum auriculatum
Royle ex Wight, attenuate hydrogen peroxide-induced oxidative
injury and inflammation in L02 cells. Int J Mol Med. 42:3157–3170.
2018.PubMed/NCBI
|
31
|
Geng Q, Wei Q, Wang S, Qi H, Zhu Q, Liu X,
Shi X and Wen S: Physcion 8-O-β-glucopyranoside extracted from
Polygonum cuspidatum exhibits anti-proliferative and
anti-inflammatory effects on MH7A rheumatoid arthritis-derived
fibroblast-like synoviocytes through the TGF-β/MAPK pathway. Int J
Mol Med. 42:745–754. 2018.PubMed/NCBI
|
32
|
Perkins ND: Integrating cell-signalling
pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol.
8:49–62. 2007. View Article : Google Scholar
|
33
|
Rossol M, Pierer M, Raulien N, Quandt D,
Meusch U, Rothe K, Schubert K, Schöneberg T, Schaefer M, Krügel U,
et al: Extracellular Ca2+ is a danger signal activating the NLRP3
inflammasome through G protein-coupled calcium sensing receptors.
Nat Commun. 3:13292012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Numerof RP and Asadullah K: Cytokine and
anti-cytokine therapies for psoriasis and atopic dermatitis.
BioDrugs. 20:93–103. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Moon PD, Han NR, Lee JS, Kim HM and Jeong
HJ: Effects of Linalyl acetate on thymic stromal lymphopoietin
production in mast cells. Molecules. 23:E17112018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ziegler SF: The role of thymic stromal
lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol.
22:795–799. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Oyoshi MK, Venturelli N and Geha RS:
Thymic stromal lymphopoietin and IL-33 promote skin inflammation
and vaccinia virus replication in a mouse model of atopic
dermatitis. J Allergy Clin Immunol. 138:283–286. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mizuno K, Morizane S, Takiguchi T and
Iwatsuki K: Dexamethasone but not tacrolimus suppresses
TNF-α-induced thymic stromal lymphopoietin expression in lesional
keratinocytes of atopic dermatitis model. J Dermatol Sci. 80:45–53.
2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lee HC and Ziegler SF: Inducible
expression of the proallergic cytokine thymic stromal lymphopoietin
in airway epithelial cells is controlled by NFkappaB. Proc Natl
Acad Sci USA. 104:914–919. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shen D, Xie X, Zhu Z, Yu X, Liu H, Wang H,
Fan H, Wang D, Jiang G and Hong M: Screening active components from
Yu-ping-feng-san for regulating initiative key factors in allergic
sensitization. PLoS One. 9:e1072792014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Humke EW, Shriver SK, Starovasnik MA,
Fairbrother WJ and Dixit VM: ICEBERG: A novel inhibitor of
interleukin-1beta generation. Cell. 103:99–111. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Moon PD, Choi IH and Kim HM: Naringenin
suppresses the production of thymic stromal lymphopoietin through
the blockade of RIP2 and caspase-1 signal cascade in mast cells.
Eur J Pharmacol. 671:128–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Han NR, Moon PD, Kim HM and Jeong HJ:
Tryptanthrin ameliorates atopic dermatitis through downregulation
of TSLP. Arch Biochem Biophys. 542:14–20. 2014. View Article : Google Scholar
|
44
|
Tasaka K: Recent advances in the research
on histamine release. Nihon Yakurigaku Zasshi. 98:197–207. 1991.In
Japanese. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tang X, Gao J, Chen J, Fang F, Wang Y, Dou
H, Xu Q and Qian Z: Inhibition by [corrected] ursolic acid of
[corrected] calcium-induced mitochondrial permeability transition
and release of two proapoptotic proteins. Biochem Biophys Res
Commun. 337:320–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Han NR, Kim HM and Jeong HJ: Thymic
stromal lymphopoietin is regulated by the intracellular calcium.
Cytokine. 59:215–217. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Moon PD, Han NR, Kim HM and Jeong HJ:
High-fat diet exacerbates dermatitis through up-regulation of TSLP.
J Invest Dermatol. 20S0022–202X. (18): 32824–0. 2018.
|