1
|
Strippoli P, Pelleri MC, Caracausi M,
Vitale L, Piovesan A, Locatelli C, Mimmi MC, Berardi AC, Ricotta D,
Radeghieri A, et al: An integrated route to identifying new
pathogenesis-based therapeutic approaches for trisomy 21 (Down
Syndrome) following the thought of Jérôme Lejeune. Sci Postprint.
1:e000102013. View Article : Google Scholar
|
2
|
Delabar JM, Allinquant B, Bianchi D,
Blumenthal T, Dekker A, Edgin J, O'Bryan J, Dierssen M, Potier MC,
Wiseman F, et al: Changing paradigms in down syndrome: The first
international conference of the trisomy 21 research society. Mol
Syndromol. 7:251–261. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lejeune J, Gauthier M and Turpin R: Human
chromosomes in tissue cultures. C R Hebd Seances Acad Sci.
248:602–603. 1959.In French. PubMed/NCBI
|
4
|
Chen YQ, Li T, Guo WY, Su FJ and Zhang YX:
Identification of altered pathways in down syndrome-associated
congenital heart defects using an individualized pathway aberrance
score. Genet Mol Res. 15:2016.
|
5
|
Pelleri MC, Gennari E, Locatelli C,
Piovesan A, Caracausi M, Antonaros F, Rocca A, Donati CM, Conti L,
Strippoli P, et al: Genotype-phenotype correlation for congenital
heart disease in down syndrome through analysis of partial trisomy
21 cases. Genomics. 109:391–400. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pelleri MC, Cattani C, Vitale L, Antonaros
F, Strippoli P, Locatelli C, Cocchi G, Piovesan A and Caracausi M:
Integrated quantitative transcriptome maps of human trisomy 21
tissues and cells. Front Genet. 9:1252018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pelleri MC, Cicchini E, Locatelli C,
Vitale L, Caracausi M, Piovesan A, Rocca A, Poletti G, Seri M,
Strippoli P and Cocchi G: Systematic reanalysis of partial trisomy
21 cases with or without down syndrome suggests a small region on
21q22.13 as critical to the phenotype. Hum Mol Genet. 25:2525–2538.
2016.PubMed/NCBI
|
8
|
Caracausi M, Ghini V, Locatelli C, Mericio
M, Piovesan A, Antonaros F, Pelleri MC, Vitale L, Vacca RA, Bedetti
F, et al: Plasma and urinary metabolomic profiles of down syndrome
correlate with alteration of mitochondrial metabolism. Sci Rep.
8:29772018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Turchinovich A, Weiz L, Langheinz A and
Burwinkel B: Characterization of extracellular circulating
microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK,
Pritchard CC, Gibson DF, Mitchell PS, Bennett CF,
Pogosova-Agadjanyan EL, Stirewalt DL, et al: Argonaute2 complexes
carry a population of circulating microRNAs independent of vesicles
in human plasma. Proc Natl Acad Sci USA. 108:5003–5008. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Vickers KC, Palmisano BT, Shoucri BM,
Shamburek RD and Remaley AT: MicroRNAs are transported in plasma
and delivered to recipient cells by high-density lipoproteins. Nat
Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Michell DL and Vickers KC: Lipoprotein
carriers of microRNAs. Biochim Biophys Acta. 1861:2069–2074. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cheng L, Sharples RA, Scicluna BJ and Hill
AF: Exosomes provide a protective and enriched source of miRNA for
biomarker profiling compared to intracellular and cell-free blood.
J Extracell Vesicles. 3:2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mateescu B, Kowal EJ, van Balkom BW,
Bartel S, Bhattacharyya SN, Buzás EI, Buck AH, de Candia P, Chow
FW, Das S, et al: Obstacles and opportunities in the functional
analysis of extracellular vesicle RNA-an ISEV position paper. J
Extracell Vesicles. 6:12860952017. View Article : Google Scholar
|
19
|
Li K, Rodosthenous RS, Kashanchi F,
Gingeras T, Gould SJ, Kuo LS, Kurre P, Lee H, Leonard JN, Liu H, et
al: Advances, challenges, and opportunities in extracellular RNA
biology: Insights from the NIH exRNA strategic workshop. JCI
Insight. 3:989422018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Momen-Heravi F, Saha B, Kodys K, Catalano
D, Satishchandran A and Szabo G: Increased number of circulating
exosomes and their microRNA cargos are potential novel biomarkers
in alcoholic hepatitis. J Transl Med. 13:2612015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Berardocco M, Radeghieri A, Busatto S,
Gallorini M, Raggi C, Gissi C, D'Agnano I, Bergese P, Felsani A and
Berardi AC: RNA-seq reveals distinctive RNA profiles of small
extracellular vesicles from different human liver cancer cell
lines. Oncotarget. 8:82920–82939. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Svobodová I, Korabečná M, Calda P, Břešťák
M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M and Hořínek
A: Differentially expressed miRNAs in trisomy 21 placentas. Prenat
Diagn. 36:775–784. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y,
Tu Z and Dai Y: Identification of dysregulated microRNAs in
lymphocytes from children with Down syndrome. Gene. 530:278–286.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Alexandrov PN, Percy ME and Lukiw WJ:
Chromosome 21-encoded microRNAs (mRNAs): Impact on down's syndrome
and trisomy-21 linked disease. Cell Mol Neurobiol. 38:769–774.
2018. View Article : Google Scholar
|
25
|
Brás A, Rodrigues AS, Gomes B and Rueff J:
Down syndrome and microRNAs. Biomed Rep. 8:11–16. 2018.PubMed/NCBI
|
26
|
Lim JH, Kim DJ, Lee DE, Han JY, Chung JH,
Ahn HK, Lee SW, Lim DH, Lee YS, Park SY and Ryu HM: Genome-wide
microRNA expression profiling in placentas of fetuses with Down
syndrome. Placenta. 36:322–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lacroix R, Judicone C, Mooberry M,
Boucekine M, Key NS and Dignat-George F: Standardization of
pre-analytical variables in plasma microparticle determination:
Results of the International Society on Thrombosis and Haemostasis
SSC Collaborative workshop. J Thromb Haemost. 11:1190–1193. 2013.
View Article : Google Scholar
|
28
|
Witwer KW, Buzás EI, Bemis LT, Bora A,
Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog
J, et al: Standardization of sample collection, isolation and
analysis methods in extracellular vesicle research. J Extracell
Vesicles. 2:2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Paolini L, Di Noto G, Maffina F,
Martellosio G, Radeghieri A, Luigi C and Ricotta D: Comparison of
Hevylite™ IgA and IgG assay with conventional techniques for the
diagnosis and follow-up of plasma cell dyscrasia. Ann Clin Biochem.
52:337–345. 2015. View Article : Google Scholar
|
30
|
Alvisi G, Roth DM, Camozzi D, Pari GS,
Loregian A, Ripalti A and Jans DA: The flexible loop of the human
cytomegalovirus DNA polymerase processivity factor ppUL44 is
required for effi-cient DNA binding and replication in cells. J
Virol. 83:9567–9576. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Alvisi G, Avanzi S, Musiani D, Camozzi D,
Leoni V, Ly-Huynh JD and Ripalti A: Nuclear import of HSV-1 DNA
polymerase proces-sivity factor UL42 is mediated by a C-terminally
located bipartite nuclear localization signal. Biochemistry.
47:13764–13777. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Montis C, Zendrini A, Valle F, Busatto S,
Paolini L, Radeghieri A, Salvatore A, Berti D and Bergese P: Size
distribution of extracellular vesicles by optical correlation
techniques. Colloids Surf B Biointerfaces. 158:331–338. 2017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Paolini L, Radeghieri A, Civini S, Caimi L
and Ricotta D: The Epsilon Hinge-Ear region regulates membrane
localization of the AP-4 complex. Traffic. 12:1604–1619. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Alvisi G, Paolini L, Contarini A, Zambarda
C, Di Antonio V, Colosini A, Mercandelli N, Timmoneri M, Palù G,
Caimi L, et al: Intersectin goes nuclear: Secret life of an
endocytic protein. Biochem J. 475:1455–1472. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Paolini L, Orizio F, Busatto S, Radeghieri
A, Bresciani R, Bergese P and Monti E: Exosomes secreted by HeLa
cells shuttle on their surface the plasma membrane-associated
sialidase NEU3. Biochemistry. 56:6401–6408. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Radeghieri A, Savio G, Zendrini A, Di Noto
G, Salvi A, Bergese P and Piovani G: Cultured human amniocytes
express hTERT, which is distributed between nucleus and cytoplasm
and is secreted in extracellular vesicles. Biochem Biophys Res
Commun. 483:706–711. 2017. View Article : Google Scholar
|
37
|
Vescovi R, Monti M, Moratto D, Paolini L,
Consoli F, Benerini L, Melocchi L, Calza S, Chiudinelli M, Rossi G,
et al: Collapse of the plasmacytoid dendritic cell compartment in
advanced cutaneous melanomas by components of the tumor cell
secretome. Cancer Immunol Res. 7:12–28. 2019. View Article : Google Scholar
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
39
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinfor-matics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar
|
40
|
Wang J, Vasaikar S, Shi Z, Greer M and
Zhang B: WebGestalt 2017: A more comprehensive, powerful, flexible
and interactive gene set enrichment analysis toolkit. Nucleic Acids
Res. 45:W130–W137. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rappaport N, Twik M, Plaschkes I, Nudel R,
Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M and Lancet
D: MalaCards: An amalgamated human disease compendium with diverse
clinical and genetic annotation and structured search. Nucleic
Acids Res. 45:D877–D887. 2017. View Article : Google Scholar
|
42
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kaufman L and Rousseeuw PJ: Clustering by
means of medoids Statistical Data Analysis Based on the L1 Norm.
North-Holland/Elsevier Amsterdam: pp. 405–416. 1987
|
44
|
Andreu Z, Rivas E, Sanguino-Pascual A,
Lamana A, Marazuela M, González-Alvaro I, Sánchez-Madrid F, de la
Fuente H and Yáñez-Mó M: Comparative analysis of EV isolation
procedures for miRNAs detection in serum samples. J Extracell
Vesicles. 5:316552016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Paolini L, Zendrini A and Radeghieri A:
Biophysical properties of extracellular vesicles in diagnostics.
Biomark Med. 12:383–391. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Paolini L, Zendrini A, Di Noto G, Busatto
S, Lottini E, Radeghieri A, Dossi A, Caneschi A, Ricotta D and
Bergese P: Residual matrix from different separation techniques
impacts exosome biological activity. Sci Rep. 6:235502016.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Théry C, Witwer KW, Aikawa E, Alcaraz MJ,
Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F,
Atkin-Smith GK, et al: Minimal information for studies of
extracellular vesicles 2018 (MISEV2018): A position statement of
the international society for extracellular vesicles and update of
the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018.
View Article : Google Scholar
|
48
|
Karimi N, Cvjetkovic A, Jang SC,
Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lötvall J and
Lässer C: Detailed analysis of the plasma extracellular vesicle
proteome after separation from lipoproteins. Cell Mol Life Sci.
75:2873–2886. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huang X, Yuan T, Tschannen M, Sun Z, Jacob
H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, et al:
Characterization of human plasma-derived exosomal RNAs by deep
sequencing. BMC Genomics. 14:3192013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shurtleff MJ, Temoche-Diaz MM, Karfilis
KV, Ri S and Schekman R: Y-box protein 1 is required to sort
microRNAs into exosomes in cells and in a cell-free reaction.
Elife. 5:e192762016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pu C, Huang H, Wang Z, Zou W, Lv Y, Zhou
Z, Zhang Q, Qiao L, Wu F and Shao S: Extracellular
vesicle-associated mir-21 and mir-144 are markedly elevated in
serum of patients with hepato-cellular carcinoma. Front Physiol.
9:9302018. View Article : Google Scholar
|
52
|
Garcia-Contreras M, Shah SH, Tamayo A,
Robbins PD, Golberg RB, Mendez AJ and Ricordi C: Plasma-derived
exosome characterization reveals a distinct microRNA signature in
long duration Type 1 diabetes. Sci Rep. 7:59982017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Pelleri MC, Piovesan A, Caracausi M,
Berardi AC, Vitale L and Strippoli P: Integrated differential
transcriptome maps of acute megakaryoblastic leukemia (AMKL) in
children with or without down syndrome (DS). BMC Med Genomics.
7:632014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hamlett ED, Goetzl EJ, Ledreux A,
Vasilevko V, Boger HA, LaRosa A, Clark D, Carroll SL,
Carmona-Iragui M, Fortea J, et al: Neuronal exosomes reveal
Alzheimer's disease biomarkers in Down syndrome. Alzheimers Dement.
13:541–549. 2017. View Article : Google Scholar
|
55
|
Gauthier SA, Perez-Gonzalez R, Sharma A,
Huang FK, Alldred MJ, Pawlik M, Kaur G, Ginsberg SD, Neubert TA and
Levy E: Enhanced exosome secretion in down syndrome brain-a
protective mechanism to alleviate neuronal endosomal abnormalities.
Acta Neuropathol Commun. 5:652017. View Article : Google Scholar
|
56
|
Zhang L, Pan L, Xiang B, Zhu H, Wu Y, Chen
M, Guan P, Zou X, Valencia CA, Dong B, et al: Potential role of
exosome-associated microRNA panels and in vivo environment to
predict drug resistance for patients with multiple myeloma.
Oncotarget. 7:30876–30891. 2016.PubMed/NCBI
|
57
|
Chiam K, Wang T, Watson DI, Mayne GC,
Irvine TS, Bright T, Smith L, White IA, Bowen JM, Keefe D, et al:
Circulating serum exosomal miRNAs as potential biomarkers for
esophageal adenocarcinoma. J Gastrointest Surg. 19:1208–1215. 2015.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Neumann F, Gourdain S, Albac C, Dekker AD,
Bui LC, Dairou J, Schmitz-Afonso I, Hue N, Rodrigues-Lima F,
Delabar JM, et al: DYRK1A inhibition and cognitive rescue in a Down
syndrome mouse model are induced by new fluoro-DANDY derivatives.
Sci Rep. 8:28592018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Antoniou A, Khudayberdiev S, Idziak A,
Bicker S, Jacob R and Schratt G: The dynamic recruitment of TRBP to
neuronal membranes mediates dendritogenesis during development.
EMBO Rep. 19:e448532018. View Article : Google Scholar :
|
60
|
Cheng C, Li W, Zhang Z, Yoshimura S, Hao
Q, Zhang C and Wang Z: MicroRNA-144 is regulated by activator
protein-1 (AP-1) and decreases expression of Alzheimer
disease-related a disintegrin and metalloprotease 10 (ADAM10). J
Biol Chem. 288:13748–13761. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Katsuura S, Kuwano Y, Yamagishi N,
Kurokawa K, Kajita K, Akaike Y, Nishida K, Masuda K, Tanahashi T
and Rokutan K: MicroRNAs miR-144/144* and miR-16 in peripheral
blood are potential biomarkers for naturalistic stress in healthy
Japanese medical students. Neurosci Lett. 516:79–84. 2012.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Murphy CP, Li X, Maurer V, Oberhauser M,
Gstir R, Wearick-Silva LE, Viola TW, Schafferer S, Grassi-Oliveira
R, Whittle N, et al: MicroRNA-mediated rescue of fear extinction
memory by miR-144-3p in extinction-impaired mice. Biol Psychiatry.
81:979–989. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Zhang Y, Liao JM, Zeng SX and Lu H: p53
downregulates Down syndrome-associated DYRK1A through miR-1246.
EMBO Rep. 12:811–817. 2011. View Article : Google Scholar : PubMed/NCBI
|
64
|
da Costa Martins PA, Salic K, Gladka MM,
Armand AS, Leptidis S, el Azzouzi H, Hansen A, Coenen-de Roo CJ,
Bierhuizen MF, van der Nagel R, et al: MicroRNA-199b targets the
nuclear kinase Dyrk1a in an auto-amplification loop promoting
calcineurin/NFAT signalling. Nat Cell Biol. 12:1220–1227. 2010.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Feki A and Hibaoui Y: DYRK1A protein, A
promising therapeutic target to improve cognitive deficits in down
syndrome. Brain Sci. 8:E1872018. View Article : Google Scholar : PubMed/NCBI
|
66
|
Najas S, Arranz J, Lochhead PA, Ashford
AL, Oxley D, Delabar JM, Cook SJ, Barallobre MJ and Arbonés ML:
DYRK1A-mediated cyclin D1 degradation in neural stem cells
contributes to the neurogenic cortical defects in down syndrome.
EBioMedicine. 2:120–134. 2015. View Article : Google Scholar : PubMed/NCBI
|
67
|
Arbones ML, Thomazeau A, Nakano-Kobayashi
A, Hagiwara M and Delabar JM: DYRK1A and cognition: A lifelong
relationship. Pharmacol Ther. 194:199–221. 2019. View Article : Google Scholar
|
68
|
Janel N, Sarazin M, Corlier F, Corne H, de
Souza LC, Hamelin L, Aka A, Lagarde J, Blehaut H, Hindié V, et al:
Plasma DYRK1A as a novel risk factor for Alzheimer's disease.
Transl Psychiatry. 4:e4252014. View Article : Google Scholar : PubMed/NCBI
|
69
|
Barallobre MJ, Perier C, Bove J, Laguna A,
Delabar JM, Vila M and Arbonés ML: DYRK1A promotes dopaminergic
neuron survival in the developing brain and in a mouse model of
Parkinson's disease. Cell Death Dis. 5:e12892014. View Article : Google Scholar : PubMed/NCBI
|
70
|
Chrast R, Scott HS, Chen H, Kudoh J,
Rossier C, Minoshima S, Wang Y, Shimizu N and Antonarakis SE:
Cloning of two human homologs of the Drosophila single-minded gene
SIM1 on chromosome 6q and SIM2 on 21q within the Down syndrome
chromosomal region. Genome Res. 7:615–624. 1997. View Article : Google Scholar : PubMed/NCBI
|
71
|
Fu L, Shi Z, Luo G, Tu W, Wang X, Fang Z
and Li X: Multiple microRNAs regulate human FOXP2 gene expression
by targeting sequences in its 3′ untranslated region. Mol Brain.
7:712014. View Article : Google Scholar
|