1
|
Lee CW, Hsiao WT and Lee OK: Mesenchymal
stromal cell-based therapies reduce obesity and metabolic syndromes
induced by a high-fat diet. Transl Res. 182:61–74. e82017.
View Article : Google Scholar
|
2
|
Bottcher M, Hofmann AD, Bruns H, Haibach
M, Loschinski R, Saul D, Mackensen A, Le Blanc K, Jitschin R and
Mougiakakos D: Mesenchymal stromal cells disrupt mTOr-signaling and
aerobic glycolysis during T-cell activation. Stem Cells.
34:516–521. 2016. View Article : Google Scholar
|
3
|
Hare JM, Traverse JH, Henry TD, Dib N,
Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE,
Gammon RS, et al: A randomized, double-blind, placebo-controlled,
doseescalation study of intravenous adult human mesenchymal stem
cells (prochymal) after acute myocardial infarction. J Am Coll
Cardiol. 54:2277–2286. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang XP, Sun Z, Miyagi Y, McDonald
Kinkaid H, Zhang L, Weisel RD and Li RK: Differentiation of
allogeneic mesenchymal stem cells induces immunogenicity and limits
their long-term benefits for myocardial repair. Circulation.
122:2419–2429. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Meester C, Timmermans AD, Balteau M,
Ginion A, Roelants V, Noppe G, Porporato PE, Sonveaux P, Viollet B,
Sakamoto K, et al: Role of AMP-activated protein kinase in
regulating hypoxic survival and proliferation of mesenchymal stem
cells. Cardiovasc Res. 101:20–29. 2014. View Article : Google Scholar
|
6
|
Buravkova LB, Andreeva ER, Gogvadze V and
Zhivotovsky B: Mesenchymal stem cells and hypoxia: Where are we?
Mitochondrion. 19:105–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu X, Wu R, Jiang Z, Wang L, Chen P, Zhang
L, Yang L, Wu Y, Chen H, Chen H, et al: Leptin signaling is
required for augmented therapeutic properties of mesenchymal stem
cells conferred by hypoxia preconditioning. Stem Cells.
32:2702–2713. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kelesidis T, Kelesidis I, Chou S and
Mantzoros CS: Narrative review: The role of leptin in human
physiology: Emerging clinical applications. Ann Intern Med.
152:93–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang F, Wu R, Jiang Z, Chen J, Nan J, Su
S, Zhang N, Wang C, Zhao J, Ni C, et al: Leptin increases
mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance
therapeutic effects of mesenchymal stem cell transplantation. Cell
Death Dis. 9:5562018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pernas L and Scorrano L: Mito-morphosis:
Mitochondrial fusion, fission, and cristae remodeling as key
mediators of cellular function. Annu Rev Physiol. 78:505–531. 2016.
View Article : Google Scholar
|
11
|
Head B, Griparic L, Amiri M, Gandre-Babbe
S and van der Bliek AM: Inducible proteolytic inactivation of OPA1
mediated by the OMA1 protease in mammalian cells. J Cell Biol.
187:959–966. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Quiros PM, Langer T and Lopez-Otin C: New
roles for mitochondrial proteases in health, ageing and disease.
Nat Rev Mol Cell Biol. 16:345–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wai T and Langer T: Mitochondrial dynamics
and metabolic regulation. Trends Endocrinol Metab. 27:105–117.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Santoro A, Campolo M, Liu C, Sesaki H,
Meli R, Liu ZW, Kim JD and Diano S: DRP1 suppresses leptin and
glucose sensing of POMC neurons. Cell Metab. 25:647–660. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Buck MD, O'Sullivan D, Klein Geltink RI,
Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der
Windt GJ, et al: Mitochondrial dynamics controls T cell fate
through metabolic programming. Cell. 166:63–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong
Z, Zhao J, Zhang N, Ye J, Wang Y, et al: TNFR2 stimulation promotes
mitochondrial fusion via stat3- and NF-kB-dependent activation of
OPA1 expression. Circ Res. 121:392–410. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuznetsov AV, Veksler V, Gellerich FN,
Saks V, Margreiter R and Kunz WS: Analysis of mitochondrial
function in situ in permeabilized muscle fibers, tissues and cells.
Nat Protoc. 3:965–976. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang N, Ye F, Zhu W, Hu D, Xiao C, Nan J,
Su S, Wang Y, Liu M, Gao K, et al: Cardiac ankyrin repeat protein
attenuates cardiomyocyte apoptosis by upregulation of Bcl-2
expression. Biochim Biophys Acta. 1863:3040–3049. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang C, Chen H, Zhu W, Xu Y, Liu M, Zhu L,
Yang F, Zhang L, Liu X, Zhong Z, et al: Nicotine accelerates
atherosclerosis in apolipoprotein E–deficient mice by activating α7
nicotinic acetylcholine receptor on mast cells. Arterioscler Thromb
Vasc Biol. 37:53–65. 2017. View Article : Google Scholar
|
20
|
Liu X, Hu D, Zeng Z, Zhu W, Zhang N, Yu H,
Chen H, Wang K, Wang Y, Wang L, et al: SRT1720 promotes survival of
aged human mesenchymal stem cells via FAIM: A pharmacological
strategy to improve stem cell-based therapy for rat myocardial
infarction. Cell Death Dis. 8:e27312017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lahera V, de Las Heras N, Lopez-Farre A,
Manucha W and Ferder L: Role of mitochondrial dysfunction in
hypertension and obesity. Curr Hypertens Rep. 19:112017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Giuliano M, Lauricella M, Calvaruso G,
Carabillò M, Emanuele S, Vento R and Tesoriere G: The apoptotic
effects and synergistic interaction of sodium butyrate and MG132 in
human retinoblastoma Y79 cells. Cancer Res. 59:5586–5595.
1999.PubMed/NCBI
|
23
|
Chan DC: Fusion and fission: Interlinked
processes critical for mitochondrial health. Annu Rev Genet.
46:265–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Quirós PM, Ramsay AJ, Sala D,
Fernández-Vizarra E, Rodríguez F, Peinado JR, Fernández-García MS,
Vega JA, Enríquez JA, Zorzano A and López-Otín C: Loss of
mitochondrial protease OMA1 alters processing of the GTPase OPA1
and causes obesity and defective thermogenesis in mice. EMBO J.
31:2117–2133. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li Y, Wong K, Giles A, Jiang J, Lee JW,
Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L and Zang M:
Hepatic SIRT1 attenuates hepatic steatosis and controls energy
balance in mice by inducing fibroblast growth factor 21.
Gastroenterology. 146:539–549e7. 2014. View Article : Google Scholar :
|
26
|
Flier JS, Harris M and Hollenberg AN:
Leptin, nutrition, and the thyroid: The why, the wherefore, and the
wiring. J Clin Invest. 105:859–861. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Parra V, Verdejo HE, Iglewski M, Del Campo
A, Troncoso R, Jones D, Zhu Y, Kuzmicic J, Pennanen C,
Lopez-Crisosto C, et al: Insulin stimulates mitochondrial fusion
and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1
signaling pathway. Diabetes. 63:75–88. 2014. View Article : Google Scholar
|
28
|
Patten DA, Wong J, Khacho M, Soubannier V,
Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM,
Trinkle-Mulcahy L, et al: OPA1-dependent cristae modulation is
essential for cellular adaptation to metabolic demand. EMBO J.
33:2676–2691. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen LQ, Cheung LS, Feng L, Tanner W and
Frommer WB: Transport of sugars. Annu Rev Biochem. 84:865–894.
2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong
L, Ren W, Hirata K, Yamamoto M, Fan S and Yan N: Molecular basis of
ligand recognition and transport by glucose transporters. Nature.
526:391–396. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zambrowicz B, Freiman J, Brown PM, Frazier
KS, Turnage A, Bronner J, Ruff D, Shadoan M, Banks P, Mseeh F, et
al: LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control
in patients with type 2 diabetes in a randomized,
placebo-controlled trial. Clin Pharmacol Ther. 92:158–169. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hu X, Xu Y, Zhong Z, Wu Y, Zhao J, Wang Y,
Cheng H, Kong M, Zhang F, Chen Q, et al: A large-scale
investigation of hypoxia-preconditioned allogeneic mesenchymal stem
cells for myocardial repair in nonhuman primates: Paracrine
activity without remuscularization. Circ Res. 118:970–983. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lavrentieva A, Majore I, Kasper C and Hass
R: Effects of hypoxic culture conditions on umbilical cord-derived
human mesenchymal stem cells. Cell Commun Signal. 8:182010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Volkmer E, Kallukalam BC, Maertz J, Otto
S, Drosse I, Polzer H, Bocker W, Stengele M, Docheva D, Mutschler W
and Schieker M: Hypoxic preconditioning of human mesenchymal stem
cells overcomes hypoxia-induced inhibition of osteogenic
differentiation. Tissue Eng Part A. 16:153–164. 2010. View Article : Google Scholar
|
35
|
Zhu H, Sun A, Zou Y and Ge J: Inducible
metabolic adaptation promotes mesenchymal stem cell therapy for
ischemia: A hypoxia-induced and glycogen-based energy prestorage
strategy. Arterioscler Thromb Vasc Biol. 34:870–876. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Mylotte LA, Duffy AM, Murphy M, O'Brien T,
Samali A, Barry F and Szegezdi E: Metabolic flexibility permits
mesenchymal stem cell survival in an ischemic environment. Stem
Cells. 26:1325–1336. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hsiao ST, Asgari A, Lokmic Z, Sinclair R,
Dusting GJ, Lim SY and Dilley RJ: Comparative analysis of paracrine
factor expression in human adult mesenchymal stem cells derived
from bone marrow, adipose, and dermal tissue. Stem Cells Dev.
21:2189–2203. 2012. View Article : Google Scholar :
|
38
|
Saraswati S, Guo Y, Atkinson J and Young
PP: Prolonged hypoxia induces monocarboxylate transporter-4
expression in mesenchymal stem cells resulting in a secretome that
is deleterious to cardiovascular repair. Stem Cells. 33:1333–1344.
2015. View Article : Google Scholar :
|
39
|
Tachibana A, Santoso MR, Mahmoudi M,
Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert
AD, et al: Paracrine effects of the pluripotent stem cell-derived
cardiac myocytes salvage the injured myocardium. Circ Res.
121:e22–e36. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Morton GJ and Schwartz MW: Leptin and the
central nervous system control of glucose metabolism. Physiol Rev.
91:389–411. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rasmussen BA, Breen DM, Duca FA, Côté CD,
Zadeh-Tahmasebi M, Filippi BM and Lam TK: Jejunal leptin-PI3K
signaling lowers glucose production. Cell Metab. 19:155–161. 2014.
View Article : Google Scholar
|
42
|
Michel M, Page-McCaw PS, Chen W and Cone
RD: Leptin signaling regulates glucose homeostasis, but not
adipostasis, in the zebrafish. Proc Natl Acad Sci USA.
113:3084–3089. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Varanita T, Soriano ME, Romanello V,
Zaglia T, Quintana-Cabrera R, Semenzato M, Menabò R, Costa V,
Civiletto G, Pesce P, et al: The opa1-dependent mitochondrial
cristae remodeling pathway controls atrophic, apoptotic, and
ischemic tissue damage. Cell Metab. 21:834–844. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tondera D, Grandemange S, Jourdain A,
Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke
I, Merkwirth C, et al: SLP-2 is required for stress-induced
mitochondrial hyperfusion. EMBO J. 28:1589–1600. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bertero E and Maack C: Metabolic
remodelling in heart failure. Nat Rev Cardiol. 15:457–470. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Gamble J and Lopaschuk GD: Glycolysis and
glucose oxidation during reperfusion of ischemic hearts from
diabetic rats. Biochim Biophys Acta. 1225:191–199. 1994. View Article : Google Scholar : PubMed/NCBI
|
47
|
Benomar Y, Naour N, Aubourg A, Bailleux V,
Gertler A, Djiane J, Guerre-Millo M and Taouis M: Insulin and
leptin induce Glut4 plasma membrane translocation and glucose
uptake in a human neuronal cell line by a phosphatidylinositol
3-kinase-dependent mechanism. Endocrinology. 147:2550–2556. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Berti L, Kellerer M, Capp E and Häring HU:
Leptin stimulates glucose transport and glycogen synthesis in C2C12
myotubes: Evidence for a PI3-kinase mediated effect. Diabetologia.
40:606–609. 1997. View Article : Google Scholar : PubMed/NCBI
|
49
|
Berti L and Gammeltoft S: Leptin
stimulates glucose uptake in C2C12 muscle cells by activation of
ERK2. Mol Cell Endocrinol. 157:121–130. 1999. View Article : Google Scholar
|