1
|
Coultas DB, Zumwalt RE, Black WC and
Sobonya RE: The epidemiology of interstitial lung diseases. Am J
Respir Crit Care Med. 150:967–972. 1994. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mannino DM, Etzel RA and Parrish RG:
Pulmonary fibrosis deaths in the United States, 1979-1991. An
analysis of multiple-cause mortality data. Am J Respir Crit Care
Med. 153:1548–1552. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Noble PW: Idiopathic pulmonary fibrosis:
Natural history and prognosis. Clin Chest Med. 27(1 Suppl 1):
S11–S16. v2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Raghu G, Weycker D, Edelsberg J, Bradford
WZ and Oster G: Incidence and prevalence of idiopathic pulmonary
fibrosis. Am J Respir Crit Care Med. 174:810–816. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Raghu G, Collard HR, Egan JJ, Martinez FJ,
Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et
al: An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary
fibrosis: Evidence-based guidelines for diagnosis and management.
Am J Respir Crit Care Med. 183:788–824. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cai M, Zhu M, Ban C, Su J, Ye Q, Liu Y,
Zhao W, Wang C and Dai H: Clinical features and outcomes of 210
patients with idiopathic pulmonary fibrosis. Chin Med J (Engl).
127:1868–1873. 2014.
|
7
|
Selman M, King TE and Pardo A; American
Thoracic Society; European Respiratory Society; American College of
Chest Physicians: Idiopathic pulmonary fibrosis: Prevailing and
evolving hypotheses about its pathogenesis and implications for
therapy. Ann Intern Med. 134:136–151. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Thannickal VJ, Toews GB, White ES, Lynch
JP III and Martinez FJ: Mechanisms of pulmonary fibrosis. Annu Rev
Med. 55:395–417. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zoz DF, Lawson WE and Blackwell TS:
Idiopathic pulmonary fibrosis: A disorder of epithelial cell
dysfunction. Am J Med Sci. 341:435–438. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Selman M and Pardo A: Role of epithelial
cells in idiopathic pulmonary fibrosis: From innocent targets to
serial killers. Proc Am Thorac Soc. 3:364–372. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Baumgartner KB, Samet JM, Stidley CA,
Colby TV and Waldron JA: Cigarette smoking: A risk factor for
idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.
155:242–248. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taskar VS and Coultas DB: Is idiopathic
pulmonary fibrosis an environmental disease? Proc Am Thorac Soc.
3:293–298. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Raghu G, Freudenberger TD, Yang S, Curtis
JR, Spada C, Hayes J, Sillery JK, Pope CE II and Pellegrini CA:
High prevalence of abnormal acid gastro-oesophageal reflux in
idiopathic pulmonary fibrosis. Eur Respir J. 27:136–142. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hubbard R, Lewis S, Richards K, Johnston I
and Britton J: Occupational exposure to metal or wood dust and
aetiology of cryptogenic fibrosing alveolitis. Lancet. 347:284–289.
1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kelly BG, Lok SS, Hasleton PS, Egan JJ and
Stewart JP: A rearranged form of Epstein-Barr virus DNA is
associated with idiopathic pulmonary fibrosis. Am J Respir Crit
Care Med. 166:510–513. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Marmai C, Sutherland RE, Kim KK, Dolganov
GM, Fang X, Kim SS, Jiang S, Golden JA, Hoopes CW, Matthay MA, et
al: Alveolar epithelial cells express mesenchymal proteins in
patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell
Mol Physiol. 301:L71–L78. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rock JR, Barkauskas CE, Cronce MJ, Xue Y,
Harris JR, Liang J, Noble PW and Hogan BL: Multiple stromal
populations contribute to pulmonary fibrosis without evidence for
epithelial to mesenchymal transition. Proc Natl Acad Sci USA.
108:E1475–E1483. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim KK, Kugler MC, Wolters PJ, Robillard
L, Galvez MG, Brumwell AN, Sheppard D and Chapman HA: Alveolar
epithelial cell mesenchymal transition develops in vivo during
pulmonary fibrosis and is regulated by the extracellular matrix.
Proc Natl Acad Sci USA. 103:13180–13185. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang C, Liu G, Luckhardt T, Antony V,
Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces
alveolar type II cell senescence through activating p53-p21-Rb
pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Korfei M, Ruppert C, Mahavadi P, Henneke
I, Markart P, Koch M, Lang G, Fink L, Bohle RM, Seeger W, et al:
Epithelial endoplasmic reticulum stress and apoptosis in sporadic
idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.
178:838–846. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Im J, Kim K, Hergert P and Nho RS:
Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas
ligand-dependent apoptosis via the alteration of decoy receptor 3.
J Pathol. 240:25–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Araya J, Kojima J, Takasaka N, Ito S,
Fujii S, Hara H, Yanagisawa H, Kobayashi K, Tsurushige C, Kawaishi
M, et al: Insufficient autophagy in idiopathic pulmonary fibrosis.
Am J Physiol Lung Cell Mol Physiol. 304:L56–L69. 2013. View Article : Google Scholar
|
23
|
Geng J, Huang X, Li Y, Xu X, Li S, Jiang
D, Liang J, Wang C and Dai H: Down-regulation of USP13 mediates
phenotype transformation of fibroblasts in idiopathic pulmonary
fibrosis. Respir Res. 16:1242015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nie Y, Sun L, Wu Y, Yang Y, Wang J, He H,
Hu Y, Chang Y, Liang Q, Zhu J, et al: AKT2 regulates pulmonary
inflammation and fibrosis via modulating macrophage activation. J
Immunol. 198:4470–4480. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Peljto AL, Zhang Y, Fingerlin TE, Ma SF,
Garcia JG, Richards TJ, Silveira LJ, Lindell KO, Steele MP, Loyd
JE, et al: Association between the MUC5B promoter polymorphism and
survival in patients with idiopathic pulmonary fibrosis. JAMA.
309:2232–2239. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rajasekaran SA, Huynh TP, Wolle DG,
Espineda CE, Inge LJ, Skay A, Lassman C, Nicholas SB, Harper JF,
Reeves AE, et al: Na,K-ATPase subunits as markers for
epithelial-mesenchymal transition in cancer and fibrosis. Mol
Cancer Ther. 9:1515–1524. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mony S, Lee SJ, Harper JF, Barwe SP and
Langhans SA: Regulation of Na,K-ATPase beta1-subunit in
TGF-β2-mediated epithelial-to-mesenchymal transition in human
retinal pigmented epithelial cells. Exp Eye Res. 115:113–122. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Pierre SV and Xie Z: The Na,K-ATPase
receptor complex: Its organization and membership. Cell Biochem
Biophys. 46:303–316. 2006. View Article : Google Scholar
|
29
|
Xie Z and Askari A: Na(+)/K(+)-ATPase as a
signal transducer. Eur J Biochem. 269:2434–2439. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Barwe SP, Anilkumar G, Moon SY, Zheng Y,
Whitelegge JP, Rajasekaran SA and Rajasekaran AK: Novel role for
Na,K-ATPase in phosphatidylinositol 3-kinase signaling and
suppression of cell motility. Mol Biol Cell. 16:1082–1094. 2005.
View Article : Google Scholar :
|
31
|
Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y,
Zheng X, Dong S, Liu X, Yang X, et al: Blocking follistatin-like 1
attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med.
212:235–252. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yogo Y, Fujishima S, Inoue T, Saito F,
Shiomi T, Yamaguchi K and Ishizaka A: Macrophage derived chemokine
(CCL22), thymus and activation-regulated chemokine (CCL17), and
CCR4 in idiopathic pulmonary fibrosis. Respir Res. 10:802009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang YC, Liu JS, Tang HK, Nie J, Zhu JX,
Wen LL and Guo QL: miR-221 targets HMGA2 to inhibit
bleomycin-induced pulmonary fibrosis by regulating
TGFβ1/Smad3-induced EMT. Int J Mol Med. 38:1208–1216. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zheng Q, Tong M, Ou B, Liu C, Hu C and
Yang Y: Isorhamnetin protects against bleomycin-induced pulmonary
fibrosis by inhibiting endoplasmic reticulum stress and
epithelial-mesenchymal transition. Int J Mol Med. 43:117–126.
2019.
|
35
|
Xu X, Wan X, Geng J, Li F, Yang T and Dai
H: Rapamycin regulates connective tissue growth factor expression
of lung epithelial cells via phosphoinositide 3-kinase. Exp Biol
Med (Maywood). 238:1082–1094. 2013. View Article : Google Scholar
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
37
|
Tokhtaeva E, Sachs G and Vagin O: Assembly
with the Na, K-ATPase alpha(1) subunit is required for export of
beta(1) and beta(2) subunits from the endoplasmic reticulum.
Biochemistry. 48:11421–11431. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lemas MV, Hamrick M, Takeyasu K and
Fambrough DM: 26 amino acids of an extracellular domain of the
Na,K-ATPase alpha-subunit are sufficient for assembly with the
Na,K-ATPase beta-subunit. J Biol Chem. 269:8255–8259.
1994.PubMed/NCBI
|
39
|
Zatyka M, Ricketts C, da Silva Xavier G,
Minton J, Fenton S, Hofmann-Thiel S, Rutter GA and Barrett TG:
Sodium-potassium ATPase 1 subunit is a molecular partner of
Wolframin, an endoplasmic reticulum protein involved in ER stress.
Hum Mol Genet. 17:190–200. 2008. View Article : Google Scholar
|
40
|
Lawson WE, Crossno PF, Polosukhin VV,
Roldan J, Cheng DS, Lane KB, Blackwell TR, Xu C, Markin C, Ware LB,
et al: Endoplasmic reticulum stress in alveolar epithelial cells is
prominent in IPF: Association with altered surfactant protein
processing and herpesvirus infection. Am J Physiol Lung Cell Mol
Physiol. 294:L1119–L1126. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mulugeta S, Nguyen V, Russo SJ, Muniswamy
M and Beers MF: A surfactant protein C precursor protein BRICHOS
domain mutation causes endoplasmic reticulum stress, proteasome
dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol.
32:521–530. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Maguire JA, Mulugeta S and Beers MF:
Endoplasmic reticulum stress induced by surfactant protein C
BRICHOS mutants promotes proinflammatory signaling by epithelial
cells. Am J Respir Cell Mol Biol. 44:404–414. 2011. View Article : Google Scholar :
|
43
|
Ulianich L, Garbi C, Treglia AS, Punzi D,
Miele C, Raciti GA, Beguinot F, Consiglio E and Di Jeso B: ER
stress is associated with dedifferentiation and an
epithelial-to-mesenchymal transition-like phenotype in PC Cl3
thyroid cells. J Cell Sci. 121:477–486. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Morbini P, Inghilleri S, Campo I, Oggionni
T, Zorzetto M and Luisetti M: Incomplete expression of
epithelial-mesenchymal transition markers in idiopathic pulmonary
fibrosis. Pathol Res Pract. 207:559–567. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
La J, Reed E, Chan L, Smolyaninova LV,
Akomova OA, Mutlu GM, Orlov SN and Dulin NO: Downregulation of
TGF-β Receptor-2 Expression and Signaling through Inhibition of
Na/K-ATPase. PLoS One. 11:e01683632016. View Article : Google Scholar
|
46
|
Li B, Huang X, Liu Z, Xu X, Xiao H, Zhang
X, Dai H and Wang C: Ouabain ameliorates bleomycin induced
pulmonary fibrosis by inhibiting proliferation and promoting
apoptosis of lung fibroblasts. Am J Transl Res. 10:2967–2974.
2018.PubMed/NCBI
|