1
|
Chandran S, Babu SS, Vs HK, Varma HK and
John A: Osteogenic efficacy of strontium hydroxyapatite
micro-granules in osteopo-rotic rat model. J Biomater Appl.
31:499–509. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Querido W, Rossi AL and Farina M: The
effects of strontium on bone mineral: A review on current knowledge
and microanalytical approaches. Micron. 80:122–134. 2016.
View Article : Google Scholar
|
3
|
Scardueli CR, Bizelli-Silveira C,
Marcantonio RAC, Marcantonio E Jr, Stavropoulos A and Spin-Neto R:
Systemic administration of strontium ranelate to enhance the
osseointegration of implants: Systematic review of animal studies.
Int J Implant Dent. 4:212018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Reginster JY: Efficacy and safety of
strontium ranelate in the treatment of knee osteoarthritis: Results
of a double-blind randomised, placebo-controlled trial. Ann Rheum
Dis. 73:e82014. View Article : Google Scholar
|
5
|
Reginster JY, Beaudart C, Neuprez A and
Bruyère O: Strontium ranelate in the treatment of knee
osteoarthritis: New insights and emerging clinical evidence. Ther
Adv Musculoskelet Dis. 5:268–276. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chou J, Valenzuela SM, Santos J, Bishop D,
Milthorpe B, Green DW, Otsuka M and Ben-Nissan B: Strontium- and
magnesium-enriched biomimetic β-TCP macrospheres with potential for
bone tissue morphogenesis. J Tissue Eng Regen Med. 8:771–778. 2014.
View Article : Google Scholar
|
7
|
Pasqualetti S, Banfi G and Mariotti M: The
effects of strontium on skeletal development in zebrafish embryo. J
Trace Elem Med Biol. 27:375–379. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao S, Wang X, Li N, Chen Y, Su Y and
Zhang J: Effects of strontium ranelate on bone formation in the
mid-palatal suture after rapid maxillary expansion. Drug Des Devel
Ther. 9:2725–2734. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Henriques Lourenço A, Neves N,
Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, Trigo Cabral
A, Barbosa MA and Ribeiro CC: Injectable hybrid system for
strontium local delivery promotes bone regeneration in a rat
critical-sized defect model. Sci Rep. 7:50982017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Khan PK, Mahato A, Kundu B, Nandi SK,
Mukherjee P, Datta S, Sarkar S, Mukherjee J, Nath S, Balla VK and
Mandal C: Influence of single and binary doping of strontium and
lithium on in vivo biological properties of bioactive glass
scaffolds. Sci Rep. 6:329642016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mizushima N and Levine B: Autophagy in
mammalian development and differentiation. Nat Cell Biol.
12:823–830. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wan Y, Zhuo N, Li Y, Zhao W and Jiang D:
Autophagy promotes osteogenic differentiation of human bone marrow
mesenchymal stem cell derived from osteoporotic vertebrae. Biochem
Biophys Res Commun. 488:46–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Piemontese M, Onal M, Xiong J, Han L,
Thostenson JD, Almeida M and O'Brien CA: Low bone mass and changes
in the osteocyte network in mice lacking autophagy in the
osteoblast lineage. Sci Rep. 6:242622016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pantovic A, Krstic A, Janjetovic K, Kocic
J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated
time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy
controls osteogenic differentiation of human mesenchymal stem
cells. Bone. 52:524–531. 2013. View Article : Google Scholar
|
15
|
Wu SB and Wei YH: AMPK-mediated increase
of glycolysis as an adaptive response to oxidative stress in human
cells: Implication of the cell survival in mitochondrial diseases.
Biochim Biophys Acta. 1822:233–247. 2012. View Article : Google Scholar
|
16
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Klionsky DJ, Abdalla FC, Abeliovich H,
Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M,
Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and
interpretation of assays for monitoring autophagy. Autophagy.
8:445–544. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vinod V, Padmakrishnan CJ, Vijayan B and
Gopala S: 'How can I halt thee?' The puzzles involved in autophagic
inhibition. Pharmacol Res. 82:1–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Scaglione M, Fabbri L, Casella F and Guido
G: Strontium ranelate as an adjuvant for fracture healing:
Clinical, radiological, and ultrasound findings in a randomized
controlled study on wrist fractures. Osteoporos Int. 27:211–218.
2016. View Article : Google Scholar
|
21
|
Chao K, Xuxia W, Qianqian W, Yuanyuan H,
Shuya Z and Jun Z: Effects of strontium ranelate on the rats'
palatal suture after rapid maxillary expansion. Hua Xi Kou Qiang Yi
Xue Za Zhi. 34:336–340. 2016.In Chinese.
|
22
|
Querido W, Farina M and Anselme K:
Strontium ranelate improves the interaction of osteoblastic cells
with titanium substrates: Increase in cell proliferation,
differentiation and matrix mineralization. Biomatter.
5:e10278472015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Caverzasio J and Thouverey C: Activation
of FGF receptors is a new mechanism by which strontium ranelate
induces osteoblastic cell growth. Cell Physiol Biochem. 27:243–250.
2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S,
Liang Y, Cui Z, He H and Yang X: The synergistic effect of
strontium-substituted hydroxyapatite and microRNA-21 on improving
bone remodeling and osseointegration. Biomater Sci. 6:2694–2703.
2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen YP, Tan A, Ho WP, Chuang TY, Chen WC
and Chen CH: Effectiveness of strontium ranelate in the treatment
of rat model of legg-calve-perthes disease. Indian J Orthop.
52:380–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bakhit A, Kawashima N, Hashimoto K, Noda
S, Nara K, Kuramoto M, Tazawa K and Okiji T: Strontium ranelate
promotes odonto-/osteogenic differentiation/mineralization of
dental papillae cells in vitro and mineralized tissue formation of
the dental pulp in vivo. Sci Rep. 8:92242018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo X, Wei S, Lu M, Shao Z, Lu J, Xia L,
Lin K and Zou D: Dose-dependent effects of strontium ranelate on
ovariectomy rat bone marrow mesenchymal stem cells and human
umbilical vein endothelial cells. Int J Biol Sci. 12:1511–1522.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Qi HH, Bao J, Zhang Q, Ma B, Gu GY, Zhang
PL, Ou-Yang G, Wu ZM, Ying HJ and Ou-Yang PK: Wnt/β-catenin
signaling plays an important role in the protective effects of
FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.
Bioorg Med Chem Lett. 26:4720–4723. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun T, Li Z, Zhong X, Cai Z, Ning Z, Hou
T, Xiong L, Feng Y, Leung F, Lu WW and Peng S: Strontium inhibits
osteoclastogenesis by enhancing LRP6 and β-catenin-mediated OPG
targeted by miR-181d-5p. J Cell Commun Signal. 13:85–97. 2019.
View Article : Google Scholar
|
30
|
Geng T, Sun S, Yu H, Guo H, Zheng M, Zhang
S, Chen X and Jin Q: Strontium ranelate inhibits wear
particle-induced aseptic loosening in mice. Braz J Med Biol Res.
51:e74142018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Reginster JY, Brandi ML, Cannata-Andia J,
Cooper C, Cortet B, Feron JM, Genant H, Palacios S, Ringe JD and
Rizzoli R: The position of strontium ranelate in today's management
of osteoporosis. Osteoporos Int. 26:1667–1671. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cianferotti L, D'Asta F and Brandi ML: A
review on strontium ranelate long-term antifracture efficacy in the
treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet
Dis. 5:127–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Atteritano M, Catalano A, Santoro D, Lasco
A and Benvenga S: Effects of strontium ranelate on markers of
cardiovascular risk in postmenopausal osteoporotic women.
Endocrine. 53:305–312. 2016. View Article : Google Scholar
|
34
|
Kim KH and Lee MS: Autophagy-a key player
in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337.
2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Parzych KR and Klionsky DJ: An overview of
autophagy: Morphology, mechanism, and regulation. Antioxid Redox
Signal. 20:460–473. 2014. View Article : Google Scholar :
|
36
|
Liu F, Fang F, Yuan H, Yang D, Chen Y,
Williams L, Goldstein SA, Krebsbach PH and Guan JL: Suppression of
autophagy by FIP200 deletion leads to osteopenia in mice through
the inhibition of osteoblast terminal differentiation. J Bone Miner
Res. 28:2414–2430. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gómez-Puerto MC, Verhagen LP, Braat AK,
Lam EW, Coffer PJ and Lorenowicz MJ: Activation of autophagy by
FOXO3 regulates redox homeostasis during osteogenic
differentiation. Autophagy. 12:1804–1816. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kang X, Yang W, Feng D, Jin X, Ma Z, Qian
Z, Xie T, Li H, Liu J, Wang R, et al: Cartilage- specific autophagy
deficiency promotes ER stress and impairs chondrogenesis in
PERK-ATF4-CHOP-dependent manner. J Bone Miner Res. 32:2128–2141.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sul OJ, Park HJ, Son HJ and Choi HS:
Lipopolysaccharide (LPS)-induced autophagy is responsible for
enhanced osteoclastogenesis. Mol Cells. 40:880–887. 2017.PubMed/NCBI
|
40
|
Hu XK, Yin XH, Zhang HQ, Guo CF and Tang
MX: Liraglutide attenuates the osteoblastic differentiation of
MC3T3-E1 cells by modulating AMPK/mTOR signaling. Mol Med Rep.
14:3662–3668. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen H, Liu X, Chen H, Cao J, Zhang L, Hu
X and Wang J: Role of SIRT1 and AMPK in mesenchymal stem cells
differentiation. Ageing Res Rev. 13:55–64. 2014. View Article : Google Scholar
|
42
|
Wang YG, Qu XH, Yang Y, Han XG, Wang L,
Qiao H, Fan QM, Tang TT and Dai KR: AMPK promotes osteogenesis and
inhibits adipogenesis through AMPK- Gfi1- OPN axis. Cell Signal.
28:1270–1282. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kim EK, Lim S, Park JM, Seo JK, Kim JH,
Kim KT, Ryu SH and Suh PG: Human mesenchymal stem cell
differentiation to the osteogenic or adipogenic lineage is
regulated by AMP-activated protein kinase. J Cell Physiol.
227:1680–1687. 2012. View Article : Google Scholar
|
44
|
Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD,
Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS and Koh JT:
Metformin induces osteoblast differentiation via orphan nuclear
receptor SHP-mediated transactivation of Runx2. Bone. 48:885–893.
2011. View Article : Google Scholar
|
45
|
Jang WG, Kim EJ, Lee KN, Son HJ and Koh
JT: AMP-activated protein kinase (AMPK) positively regulates
osteoblast differentiation via induction of Dlx5-dependent Runx2
expression in MC3T3E1 cells. Biochem Biophys Res Commun.
404:1004–1009. 2011. View Article : Google Scholar
|
46
|
Heras-Sandoval D, Pérez-Rojas JM,
Hernández-Damián J and Pedraza-Chaverri J: The role of
PI3K/AKT/mTOR pathway in the modulation of autophagy and the
clearance of protein aggregates in neurodegeneration. Cell Signal.
26:2694–2701. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen J and Long F: mTORC1 signaling
promotes osteoblast differentiation from preosteoblasts. PLoS One.
10:e1306272015.
|