1
|
Parkin DM, Pisani P and Ferlay J: Global
cancer statistics. CA Cancer J Clin. 49:33–64. 11999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brausi M, Witjes JA, Lamm D, Persad R,
Palou J, Colombel M, Buckley R, Soloway M, Akaza H and Böhle A: A
review of current guidelines and best practice recommendations for
the management of nonmuscle invasive bladder cancer by the
international bladder cancer group. J Urol. 186:2158–2167. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Burger M, Catto JWF, Dalbagni G, Grossman
HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C,
Shariat S and Lotan Y: Epidemiology and risk factors of urothe-lial
bladder cancer. Eur Urol. 63:234–241. 2013. View Article : Google Scholar
|
5
|
Prasad SM, Decastro GJ, Steinberg GD and
Medscape: Urothelial carcinoma of the bladder: Definition,
treatment and future efforts. Nat Rev Urol. 8:631–642. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Gontero P, Bohle A, Malmstrom PU,
O'Donnell MA, Oderda M, Sylvester R and Witjes F: The role of
bacillus calmetteguérin in the treatment of non-muscle-invasive
bladder cancer. Eur Urol. 57:410–429. 2010. View Article : Google Scholar
|
7
|
Shariat SF, Kim J-H, Ayala GE, Kho K,
Wheeler TM and Lerner SP: Cyclooxygenase-2 is highly expressed in
carcinoma in situ and T1 transitional cell carcinoma of the
bladder. J Urol. 169:938–942. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ristimäki A, Nieminen O, Saukkonen K,
Hotakainen K, Nordling S and Haglund C: Expression of
cyclooxygenase-2 in human transitional cell carcinoma of the
urinary bladder. Am J Pathol. 158:849–853. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gee J, Lee IL, Jendiroba D, Fischer SM,
Grossman HB and Sabichi AL: Selective cyclooxygenase-2 inhibitors
inhibit growth and induce apoptosis of bladder cancer. Oncol Rep.
15:471–477. 2006.PubMed/NCBI
|
10
|
Adhim Z, Matsuoka T, Bito T, Shigemura K,
Lee KM, Kawabata M, Fujisawa M, Nibu K and Shirakawa T: In vitro
and in vivo inhibitory effect of three Cox-2 inhibitors and
epithelial-to-mesenchymal transition in human bladder cancer cell
lines. Br J Cancer. 105:393–402. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dovedi SJ, Kirby JA, Davies BR, Leung H
and Kelly JD: Celecoxib has potent antitumour effects as a single
agent and in combination with BCG immunotherapy in a model of
urothelial cell carcinoma. Eur Urol. 54:621–630. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Gebert LFR and MacRae IJ: Regulation of
microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37.
2019. View Article : Google Scholar
|
14
|
Gowda R, Kardos G, Sharma A, Singh S and
Robertson GP: Nanoparticle-based celecoxib and plumbagin for the
synergistic treatment of melanoma. Mol Cancer Ther. 16:440–452.
2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gowda R, Sharma A and Robertson GP:
Synergistic inhibitory effects of celecoxib and plumbagin on
melanoma tumor growth. Cancer Lett. 385:243–250. 2017. View Article : Google Scholar
|
16
|
Singh S: Liposome encapsulation of
doxorubicin and celecoxib in combination inhibits progression of
human skin cancer cells. Int J Nanomedicine. 13:11–13. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
19
|
Mittal V: Epithelial mesenchymal
transition in tumor metastasis. Annu Rev Pathol Mech Dis.
13:395–412. 2018. View Article : Google Scholar
|
20
|
Suzuki HI: MicroRNA control of TGF-β
signaling. Int J Mol Sci. 19:pii: E1901. 2018. View Article : Google Scholar
|
21
|
Expósito-Villén A, E Aránega A and Franco
D: Functional role of non-coding RNAs during
epithelial-to-mesenchymal transition. Noncoding RNA. 4:
pii:E142018.
|
22
|
Falzone L, Candido S, Salemi R, Basile MS,
Scalisi A, McCubrey JA, Torino F, Signorelli SS, Montella M and
Libra M: Computational identification of microRNAs associated to
both epithelial to mesenchymal transition and NGAL/MMP-9 pathways
in bladder cancer. Oncotarget. 8:72758–72766. 2016.
|
23
|
Ren D, Wang M, Guo W, Huang S, Wang Z,
Zhao X, Du H, Song L and Peng X: Double-negative feedback loop
between ZEB2 and miR-145 regulates epithelial-mesenchymal
transition and stem cell properties in prostate cancer cells. Cell
Tissue Res. 358:763–778. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT
and Zhao J: miR-145 and miR-203 represses TGF-β-induced
epithelial-mesenchymal transition and invasion by inhibiting SMAD3
in non-small cell lung cancer cells. Lung Cancer. 97:87–94. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
MicroRNA-145-5p inhibits gastric cancer
invasiveness through targeting N-cadherin and ZEB2 to suppress
epithelial-mesenchymal transition. Onco Targets Ther. 9:2305–2315.
2016.PubMed/NCBI
|
26
|
Chang Y, Yan W, Sun C, Liu Q, Wang J and
Wang M: miR-145-5p inhibits epithelial-mesenchymal transition via
the JNK signaling pathway by targeting MAP3K1 in non-small cell
lung cancer cells. Oncol Lett. 14:6923–6928. 2017.
|
27
|
Tan J, Qiu K, Li M and Liang Y:
Double-negative feedback loop between long non-coding RNA TUG1 and
miR-145 promotes epithelial to mesenchymal transition and
radioresis-tance in human bladder cancer cells. FEBS Lett.
589:3175–3181. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Davies G, Jiang WG and Mason MD: Cell-cell
adhesion molecules and their associated proteins in bladder cancer
cells and their role in mitogen induced cell-cell dissociation and
invasion. Anticancer Res. 19:547–552. 1999.PubMed/NCBI
|
29
|
Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin
J, Bai Y, Kong D, Jia X and Xie L: Up-regulation of E-cadherin by
small activating RNA inhibits cell invasion and migration in 5637
human bladder cancer cells. Biochem Biophys Res Commun.
375:566–570. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jang TJ, Cha WH and Lee KS: Reciprocal
correlation between the expression of cyclooxygenase-2 and
E-cadherin in human bladder transitional cell carcinomas. Virchows
Arch. 457:319–328. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Derynck R, Muthusamy BP and Saeteurn KY:
Signaling pathway cooperation in TGF-β-induced
epithelial-mesenchymal transition. Curr Opin Cell Biol. 31:56–66.
2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Song J and Shi W: The concomitant
apoptosis and EMT underlie the fundamental functions of TGF-β. Acta
Biochim Biophys Sin (Shanghai). 50:91–97. 2018. View Article : Google Scholar
|
34
|
Cantelli G, Crosas-Molist E, Georgouli M
and Sanz-Moreno V: TGFB-induced transcription in cancer. Semin
Cancer Biol. 42:60–69. 2017. View Article : Google Scholar
|
35
|
Xiang Y, Zhang Y, Tang Y and Li Q: MALAT1
modulates TGF-β1-induced endothelial-to-mesenchymal transition
through downregulation of miR-145. Cell Physiol Biochem.
42:357–372. 2017. View Article : Google Scholar
|
36
|
Megiorni F, Cialfi S, Cimino G, De Biase
RV, Dominici C, Quattrucci S and Pizzuti A: Elevated levels of
miR-145 correlate with SMAD3 down-regulation in cystic fibrosis
patients. J Cyst Fibros. 12:797–802. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Inamoto T, Taniguchi K, Takahara K,
Iwatsuki A, Takai T, Komura K, Yoshikawa Y, Uchimoto T, Saito K,
Tanda N, et al: Intravesical administration of exogenous
microRNA-145 as a therapy for mouse orthotopic human bladder cancer
xenograft. Oncotarget. 6:21628–21635. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kurtova AV, Xiao J, Mo Q, Pazhanisamy S,
Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL and Chan KS:
Blocking PGE2-induced tumour repopulation abrogates bladder cancer
chemoresistance. Nature. 517:209–213. 2015. View Article : Google Scholar :
|
40
|
Sachdeva M, Liu Q, Cao J, Lu Z and Mo Y:
Negative regulation of miR-145 by C/EBP-β through the Akt pathway
in cancer cells. Nucleic Acids Res. 40:6683–6692. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Takagi T, Iio A, Nakagawa Y, Naoe T,
Tanigawa N and Akao Y: Decreased expression of microRNA-143 and-145
in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar
|
42
|
Slaby O, Svoboda M, Fabian P, Smerdova T,
Knoflickova D, Bednarikova M, Nenutil R and Vyzula R: Altered
expression of miR-21, miR-31, miR-143 and miR-145 is related to
clinicopatho-logic features of colorectal cancer. Oncology.
72:397–402. 2008. View Article : Google Scholar
|
43
|
Liu X, Sempere LF, Galimberti F,
Freemantle SJ, Black C, Dragnev KH, Ma Y, Fiering S, Memoli V, Li
H, et al: Uncovering growth-suppressive microrNAs in lung cancer.
Clin Cancer Res. 15:1177–1183. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tong AW, Fulgham P, Jay C, Chen P, Khalil
I, Liu S, Senzer N, Eklund AC, Han J and Nemunaitis J: MicroRNA
profile analysis of human prostate cancers. Cancer Gene Ther.
16:206–216. 2009. View Article : Google Scholar
|
45
|
Ichimi T, Enokida H, Okuno Y, Kunimoto R,
Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama
K, et al: Identification of novel microRNA targets based on
microRNA signatures in bladder cancer. Int J Cancer. 125:345–352.
2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhuang J, Shen L, Yang L, Huang X, Lu Q,
Cui Y, Zheng X, Zhao X, Zhang D, Huang R, et al: TGFβ1 promotes
gemcitabine resistance through regulating the
LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer.
Theranostics. 7:3053–3067. 2017. View Article : Google Scholar :
|
47
|
Zhu Z, Xu T, Wang L, Wang X, Zhong S, Xu C
and Shen Z: MicroRNA-145 directly targets the insulin-like growth
factor receptor i in human bladder cancer cells. FEBS Lett.
588:3180–3185. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Noguchi S, Yasui Y, Iwasaki J, Kumazaki M,
Yamada N, Naito S and Akao Y: Replacement treatment with
microRNA-143 and -145 induces synergistic inhibition of the growth
of human bladder cancer cells by regulating PI3K/Akt and MAPK
signaling pathways. Cancer Lett. 328:353–361. 2013. View Article : Google Scholar
|
49
|
Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ,
Wang X, He D and Guo P: miR-145 inhibits invasion of bladder cancer
cells by targeting PAK1. Urol Oncol. 32:846–854. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fujii T, Shimada K, Tatsumi Y, Hatakeyama
K, Obayashi C, Fujimoto K and Konishi N: microRNA-145 promotes
differentiation in human urothelial carcinoma through
down-regulation of syndecan-1. BMC Cancer. 15:8182015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Boominathan L: The tumor suppressors p53,
p63, and p73 are regulators of microRNA processing complex. PLoS
One. 5:e106152010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu HF, Hsiao PW and Chao JI: Celecoxib
induces p53-PUMA pathway for apoptosis in human colorectal cancer
cells. Chem Biol Interact. 176:48–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Piplani H, Vaish V, Rana C and Sanyal SN:
Up-regulation of p53 and mitochondrial signaling pathway in
apoptosis by a combination of cox-2 inhibitor, celecoxib and
dolastatin 15, a marine mollusk linear peptide in experimental
colon carcinogenesis. Mol Carcinog. 52:845–858. 2013. View Article : Google Scholar
|
54
|
Gharghabi M, Rezaei F and Mohammadrezaei
FM: Celecoxib treatment alters p53 and mdm2 expression via COX-2
crosstalk in A549 cells. Iran J Pharm Res. 15:483–489.
2016.PubMed/NCBI
|
55
|
Chandy M, Ishida M, Shikatani EA,
El-Mounayri O, Park LC, Afroze T, Wang T, Marsden PA and Husain M:
c-Myb regulates transcriptional activation of miR-143/145 in
vascular smooth muscle cells. PLoS One. 13:e02027782018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Haldar R, Shaashua L, Lavon H, Lyons YA,
Zmora O, Sharon E, Birnbaum Y, Allweis T, Sood AK, Barshack I, et
al: Perioperative inhibition of β-adrenergic and COX2 signaling in
a clinical trial in breast cancer patients improves tumor Ki-67
expression, serum cytokine levels, and PBMCs transcriptome. Brain
Behav Immun. 73:294–309. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Li R, Yan G, Li Q, Sun H, Hu Y, Sun J and
Xu B: MicroRNA-145 protects cardiomyocytes against hydrogen
peroxide (H2O2)-induced apoptosis through
targeting the mitochondria apoptotic pathway. PLoS One.
7:e449072012. View Article : Google Scholar
|
58
|
Gharib E, Montasser Kouhsari S and Izad M:
Punica granatum L. Fruit aqueous extract suppresses reactive oxygen
species-mediated p53/p65/miR-145 expressions followed by elevated
levels of irs-1 in alloxan-diabetic rats. Cell J. 19:520–527.
2018.
|
59
|
Ostenfeld MS, Bramsen JB, Lamy P,
Villadsen SB, Fristrup N, Sørensen KD, Ulhøi B, Borre M, Kjems J,
Dyrskjøt L and Orntoft TF: miR-145 induces caspase-dependent and
-independent cell death in urothelial cancer cell lines with
targeting of an expression signature present in Ta bladder tumors.
Oncogene. 29:1073–1084. 2010. View Article : Google Scholar
|
60
|
Javadov S, Hunter JC, Barreto-Torres G and
Parodi-Rullan R: Targeting the mitochondrial permeability
transition: Cardiac ischemia-reperfusion versus carcinogenesis.
Cell Physiol Biochem. 27:179–190. 2011. View Article : Google Scholar : PubMed/NCBI
|