1
|
Onitilo AA, Engel JM, Greenlee RT and
Mukesh BN: Breast cancer subtypes based on ER/PR and Her2
expression: Comparison of clinicopathologic features and survival.
Clin Med Res. 7:4–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Partridge AH, Hughes ME, Warner ET,
Ottesen RA, Wong YN, Edge SB, Theriault RL, Blayney DW, Niland JC,
Winer EP, et al: Subtype-dependent relationship between young age
at diagnosis and breast cancer survival. J Clin Oncol.
34:3308–3314. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Elston CW: Classification and grading of
invasive breast carcinoma. Verh Dtsch Ges Pathol. 89:35–44.
2005.
|
4
|
Longacre TA, Ennis M, Quenneville LA, Bane
AL, Bleiweiss IJ, Carter BA, Catelano E, Hendrickson MR, Hibshoosh
H, Layfield LJ, et al: Interobserver agreement and reproducibility
in classification of invasive breast carcinoma: An NCI breast
cancer family registry study. Mod Pathol. 19:195–207. 2006.
View Article : Google Scholar
|
5
|
Zhang L, Yu Q, Wu XC, Hsieh MC, Loch M,
Chen VW, Fontham E and Ferguson T: Impact of chemotherapy relative
dose intensity on cause-specific and overall survival for stage
I-III breast cancer: ER+/PR+,
HER2− vs. triple-negative. Breast Cancer Res Treat.
169:pp. 175–187. 2018, View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee HJ, Song IH, Seo AN, Lim B, Kim JY,
Lee JJ, Park IA, Shin J, Yu JH, Ahn JH and Gong G: Correlations
between molecular subtypes and pathologic response patterns of
breast cancers after neoadjuvant chemotherapy. Ann Surg Oncol.
22:392–400. 2015. View Article : Google Scholar
|
7
|
Kuerer HM, Newman LA, Smith TL, Ames FC,
Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, et
al: Clinical course of breast cancer patients with complete
pathologic primary tumor and axillary lymph node response to
doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol.
17:460–469. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Prensner JR and Chinnaiyan AM: The
emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang
Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, et al: Long noncoding RNA
MALAT1 suppresses breast cancer metastasis. Nat Genet.
50:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dong H, Wang W, Mo S, Liu Q, Chen X, Chen
R, Zhang Y, Zou K, Ye M, He X, et al: Long non-coding RNA SNHG14
induces trastuzumab resistance of breast cancer via regulating
PABPC1 expression through H3K27 acetylation. J Cell Mol Med.
22:4935–4947. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang K, Li X, Song C and Li M: LncRNA
AWPPH promotes the growth of triple-negative breast cancer by
up-regulating frizzled homolog 7 (FZD7). Biosci Rep. 38:2018.
View Article : Google Scholar
|
13
|
Yang R, Xing L, Wang M, Chi H, Zhang L and
Chen J: Comprehensive analysis of differentially expressed profiles
of lncRNAs/mRNAs and miRNAs with associated ceRNA networks in
triple-negative breast cancer. Cell Physiol Biochem. 50:473–488.
2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Spitz F and Furlong EE: Transcription
factors: From enhancer binding to developmental control. Nat Rev
Genet. 13:613–626. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Flores M, Hsiao TH, Chiu YC, Chuang EY,
Huang Y and Chen Y: Gene regulation, modulation, and their
applications in gene expression data analysis. Adv Bioinformatics.
2013:3606782013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang K, Saito M, Bisikirska BC, Alvarez
MJ, Lim WK, Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin
AA, et al: Genome-wide identification of post-translational
modulators of transcription factor activity in human B cells. Nat
Biotechnol. 27:829–839. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Riley T, Sontag E, Chen P and Levine A:
Transcriptional control of human p53-regulated genes. Nat Rev Mol
Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tripathi V, Shen Z, Chakraborty A, Giri S,
Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A and
Prasanth KV: Long noncoding RNA MALAT1 controls cell cycle
progression by regulating the expression of oncogenic transcription
factor B-MYB. PLoS Genet. 9:pp. e10033682013, View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang
XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, et al: Human colorectal
cancer-specific CCAT1-L lncRNA regulates long-range chromatin
interactions at the MYC locus. Cell Res. 24:513–531. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao Y, Wang P, Wang Y, Ma X, Zhi H, Zhou
D, Li X, Fang Y, Shen W, Xu Y, et al: Lnc2Cancer v2.0: Updated
database of experimentally supported long non-coding RNAs in human
cancers. Nucleic Acids Res. 47:D1028–D1033. 2019. View Article : Google Scholar :
|
21
|
Piñero J, Bravo À, Queralt-Rosinach N,
Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz
F and Furlong LI: DisGeNET: A comprehensive platform integrating
information on human disease-associated genes and variants. Nucleic
Acids Res. 45:D833–D839. 2017. View Article : Google Scholar :
|
22
|
Wingender E, Dietze P, Karas H and Knüppel
R: TRANSFAC: A database on transcription factors and their DNA
binding sites. Nucleic Acids Res. 24:238–241. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kuleshov MV, Jones MR, Rouillard AD,
Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM,
Lachmann A, et al: Enrichr: A comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97.
2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gupta RA, Shah N, Wang KC, Kim J, Horlings
HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li H, Jia Y, Cheng J, Liu G and Song F:
LncRNA NCK1-AS1 promotes proliferation and induces cell cycle
progression by crosstalk NCK1-AS1/miR-6857/CDK-1 pathway. Cell
Death Dis. 9:1982018. View Article : Google Scholar
|
26
|
Zhang WY, Liu YJ, He Y and Chen P:
Suppression of long noncoding RNA NCK1-AS1 increases
chemosensitivity to cisplatin in cervical cancer. J Cell Physiol.
234:4302–4313. 2019. View Article : Google Scholar
|
27
|
Hennessy BT, Smith DL, Ram PT, Lu Y and
Mills GB: Exploiting the PI3K/AKT pathway for cancer drug
discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Osaki M, Oshimura M and Ito H: PI3K-Akt
pathway: Its functions and alterations in human cancer. Apoptosis.
9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luo J, Manning BD and Cantley LC:
Targeting the PI3K-Akt pathway in human cancer: Rationale and
promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chandarlapaty S, Sakr RA, Giri D, Patil S,
Heguy A, Morrow M, Modi S, Norton L, Rosen N, Hudis C and King TA:
Frequent mutational activation of the PI3K-AKT pathway in
trastuzumab-resistant breast cancer. Clin Cancer Res. 18:6784–6791.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Berns K, Horlings HM, Hennessy BT,
Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM,
Stemke-Hale K, Hauptmann M, et al: A functional genetic approach
identifies the PI3K pathway as a major determinant of trastuzumab
resistance in breast cancer. Cancer Cell. 12:395–402. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Anderson WF and Matsuno R: Breast cancer
heterogeneity: A mixture of at least two main types? J Natl Cancer
Inst. 98:948–951. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Haffty BG, Yang Q, Reiss M, Kearney T,
Higgins SA, Weidhaas J, Harris L, Hait W and Toppmeyer D:
Locoregional relapse and distant metastasis in conservatively
managed triple negative early-stage breast cancer. J Clin Oncol.
24:5652–5657. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li SP, Padhani AR, Taylor NJ, Beresford
MJ, Ah-See ML, Stirling JJ, d'Arcy JA, Collins DJ and Makris A:
Vascular characterisation of triple negative breast carcinomas
using dynamic MRI. Eur Radiol. 21:1364–1373. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Y, Zhang N, Zhang H and Yang Q:
Comparative prognostic analysis for triple-negative breast cancer
with metaplastic and invasive ductal carcinoma. J Clin Pathol.
72:418–424. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Häberle L, Hein A, Rübner M, Schneider M,
Ekici AB, Gass P, Hartmann A, Schulz-Wendtland R, Beckmann MW, Lo
WY, et al: Predicting triple-negative breast cancer subtype using
multiple single nucleotide polymorphisms for breast cancer risk and
several variable selection methods. Geburtshilfe Frauenheilkd.
77:667–678. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sorlie T, Perou CM, Tibshirani R, Aas T,
Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey
SS, et al: Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications. Proc Natl
Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X,
Xiao Y, Yu KD, Liu YR, Yu Y, et al: Genomic and transcriptomic
landscape of triple-negative breast cancers: Subtypes and treatment
strategies. Cancer Cell. 35:428–440.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shin VY, Chen J, Cheuk IW, Siu MT, Ho CW,
Wang X, Jin H and Kwong A: Long non-coding RNA NEAT1 confers
oncogenic role in triple-negative breast cancer through modulating
chemo-resistance and cancer stemness. Cell Death Dis. 10:2702019.
View Article : Google Scholar
|
41
|
Fan CN, Ma L and Liu N: Comprehensive
analysis of novel three-long noncoding RNA signatures as a
diagnostic and prognostic biomarkers of human triple-negative
breast cancer. J Cell Biochem. 120:3185–3196. 2019. View Article : Google Scholar
|
42
|
Yang F, Shen Y, Zhang W, Jin J, Huang D,
Fang H, Ji W, Shi Y, Tang L, Chen W, et al: An androgen receptor
negatively induced long non-coding RNA ARNILA binding to miR-204
promotes the invasion and metastasis of triple-negative breast
cancer. Cell Death Differ. 25:2209–2220. 2018. View Article : Google Scholar : PubMed/NCBI
|